解答题
全国卷Ⅰ(文)
2004年
20.(本小题满分12分)
从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过
测验的概率均为,每位男同学能通过测验的概率均为.试求:
(I)选出的3位同学中,至少有一位男同学的概率;
(II)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.
2005年
(20)(本大题满分12分)
9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为,若一个
坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,
则这个坑需要补种
(Ⅰ)求甲坑不需要补种的概率;
(Ⅱ)求3个坑中恰有1个坑不需要补种的概率;
(Ⅲ)求有坑需要补种的概率
(精确到)
2006年
(20) (本小题满分12分)
如图,l、l是互相垂直的异面直线,MN是它们的公垂线段.点A、B在上l,
C在l上,AM=MB=MN.
(Ⅰ)证明AC;
(Ⅱ)若,求NB与平面ABC所成角的余弦值.
2007年
(20)(本小题满分12分)
设函数在及时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有成立,求c的取值范围.
全国卷Ⅱ(文)
2004年
20.(本小题满分12分)
如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=,
侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.
(Ⅰ)求证CD⊥平面BDM;
(Ⅱ)求面B1BD与面CBD所成二面角的大小.
2005年
(20)(本小题满分12分)
如图,四棱锥P-ABCD中,底面ABCD为矩形,PD垂直于底面ABCD,AD=PD,E、F分别
为CD、PB的中点.
(Ⅰ)求证:EF垂直于平面PAB;
(Ⅱ)设AB=BC,求AC与平面AEF所成的角的大小.
2006年
(20)(本小题12分)
如图,在直三棱柱中,、分别为、的中点。
(I)证明:ED为异面直线与的公垂线;
(II)设求二面角的大小
2007年
20.(本小题满分12分)
如图,在四棱锥中,
底面为正方形,侧棱底面
分别为的中点.
(1)证明平面;
(2)设,求二面角的大小.
全国卷Ⅲ(文)
2004年
20.(本小题满分12分)某村计划建造一个室内面积为800的矩形蔬菜温室。
在温室内,沿左.右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3宽
的空地。当矩形温室的边长各为多少时?蔬菜的种植面积最大。最大种植面积是多少?
2005年
(20)(本小题满分12分)
在等差数列中,公差,是与的等差中项,已知数列,,,,
……,,……成等比数列,求数列的通项
全国卷Ⅳ(文)
2004年
20.(本小题满分12分)
某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对
第一、二、三问题分别得100分、100分、200分,答错得零分.假设这
名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题
答对与否相互之间没有影响.
(Ⅰ)求这名同学得300分的概率;
(Ⅱ)求这名同学至少得300分的概率.
北京卷(文)
2004年
(18)(本小题满分14分)
函数定义在[0,1]上,满足且,在每个区间
(1,2……)上,的图象都是平行于x轴的直线的一部分。
(I)求及,的值,并归纳出的表达式
(II)设直线,,x轴及的图象围成的矩形的面积
为(1,2……),求及的值
2005年
(18)(本小题共13分)
甲、乙俩人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.
(Ⅰ)记甲恰好击中目标2次的概率;
(Ⅱ)求乙至少击中目标2次的概率;
(Ⅲ)求乙恰好比甲多击中目标2次的概率;
2006年
(18)(本小题共13分)
某公司招聘员工,指定三门考试课程,有两种考试方案.
方案一:考试三门课程,至少有两门及格为考试通过:
方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是0.5,0.6,0.9,
且三门课程考试是否及格相互之间没有影响.求:
(Ⅰ)该应聘者用方案一考试通过的概率;
(Ⅱ)该应聘者用方案二考试通过的概率.
2007年
18.(本小题共12分)
某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆
公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:
(I)这6位乘客在其不相同的车站下车的概率;
(II)这6位乘客中恰有3人在终点站下车的概率;
天津卷(文)
2004年
20.(本小题满分12分)
设是一个公差为的等差数列,它的前10项和
且,,成等比数列。
(1)证明;(2)求公差的值和数列的通项公式。
2005年
(20)(本小题满分12)
某人在一山坡P处观看对面山项上的一座铁塔,如图所示,塔高BC=80(米),
塔所在的山高OB=220(米),OA=200(米),
图中所示的山坡可视为直线且点P在直线上,
与水平地面的夹角为 ,tan=1/2试问此人
距水平地面多高时,观看塔的视角∠BPC最大
(不计此人的身高)
2006年
(20)(本小题满分12分)
已知函数f(x)=4x3-3x2cosθ+,其中x∈R,θ为参数,且0≤θ≤.
(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)
内都是增函数,求实数a的取值范围.
2007年
(20)(本小题满分12分)
在数列中,,,.
(Ⅰ)证明数列是等比数列;
(Ⅱ)求数列的前项和;
(Ⅲ)证明不等式,对任意皆成立.
上海卷(文)
2004年
20、(本题满分14分) 第1小题满分6分, 第2小题满分8分
如图, 直线y=x与抛物线y=x2-4交于A、B两点, 线段AB的垂直
平分线与直线y=-5交于Q点.
(1) 求点Q的坐标;
(2) 当P为抛物线上位于线段AB下方
(含A、B) 的动点时, 求ΔOPQ面积的最大值.
2005年
20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分
假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房预计
在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新
建住房中,中低价房的面积均比上一年增加50万平方米那么,到那一年底,
(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少
于4750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?
2006年
20(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096.
(1)求数列{an}的通项公式:
(2)设数列{log2an}的前n项和为Tn.对数列{Tn},从第几项起Tn<-509?
2007年
19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
已知函数,常数.
(1)当时,解不等式;
(2)讨论函数的奇偶性,并说明理由.
辽宁卷(文)
2004年
20.(本小题满分12分)
甲方是一农场,乙方是一工厂. 由于乙方生产须占用甲方的资源,因此
甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付
甲方的情况下,乙方的年利润x(元)与年产量t(吨)满足函数关系
.若乙方每生产一吨产品必须赔付甲方s元(以下称s为赔付价格),
(1)将乙方的年利润w(元)表示为年产量t(吨)的函数,并求出乙方
获得最大利润的年产量;
(2)甲方每年受乙方生产影响的经济损失金额(元),在乙方
按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,
应向乙方要求的赔付价格s是多少?
2005年
20.(本小题满分12分)
某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,
两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对
每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,
分别求生产出的甲、乙产品为一等品的概率P甲、P乙;
(Ⅱ)已知一件产品的利润如表二所示,用ξ、
η分别表示一件甲、乙产品的利润,在
(I)的条件下,求ξ、η的分布列及
Eξ、Eη;
(Ⅲ)已知生产一件产品需用的工人数和资金额
如表三所示.该工厂有工人40名,可用资
金60万元.设x、y分别表示生产甲、乙产品的数量,在(II)的条件下,x、y为何
值时,最大?最大值是多少?
(解答时须给出图示)
2006年(文)
20.(本小题满分12分)
已知等差数列的前项和为,.
(1)求的值;
(2)若与的等差中项为,满足,求数列的前项和.
2007年
20.(本小题满分12分)
已知数列,满足,,且()
(I)令,求数列的通项公式;
(II)求数列的通项公式及前项和公式.
江苏卷
2004年
20.设无穷等差数列{an}的前n项和为Sn.
(Ⅰ)若首项 EQ \F(3,2) ,公差,求满足的正整数k;
(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有成立.
2005年
22.(本小题满分14分,第一小问满分4分,第二小问满分10分)
已知,函数
⑴当时,求使成立的的集合;
⑵求函数在区间上的最小值
2006年
(20)(本小题满分16分,第一小问4分,第二小问满分6分,第三小问满分6分)
设a为实数,设函数的最大值为g(a)。
(Ⅰ)设t=,求t的取值范围,并把f(x)表示为t的函数m(t)
(Ⅱ)求g(a)
(Ⅲ)试求满足的所有实数a
2007年
20.(本题满分16分)
已知是等差数列,是公比为的等比数列,,,
记为数列的前项和.
(1)若(是大于的正整数),求证:;(4分)
(2)若(是某个正整数),求证:是整数,且数列中的每一项
都是数列中的项;(8分)
(3)是否存在这样的正数,使等比数列中有三项成等差数列?
若存在,写出一个的值,并加以说明;若不存在,请说明理由.(4分)
浙江卷(文)
2004年
(20)(本题满分12分)
某地区有5个工厂,由于用电紧缺,规定每个工厂在一周内必须选择
某一天停电(选哪一天是等可能的)。假定工厂之间的选择互不影响。
(Ⅰ)求5个工厂均选择星期日停电的概率;
(Ⅱ)求至少有两个工厂选择同一天停电的概率。
2005年
18.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA,点O、D分别是AC、
PC的中点,OP⊥底面ABC.
(Ⅰ)求证∥平面
(Ⅱ) 求直线与平面PBC所成角的大小;
2006年
(18)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;
乙袋装有2个红球,n个白球.现从甲、乙两袋中各任取2个球.
(Ⅰ)若n=3,求取到的4个球全是红球的概率;
(Ⅱ)若取到的4个球中至少有2个红球的概率为,求n.
2007年
21.(本题15分)如图,直线与椭圆交于两点,记的面积为.
(I)求在,的条件下,的最大值;
(II)当,时,求直线的方程.
福建卷(文)
2004年
20.(本小题满分12分)
某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能
力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利
润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,
预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润
为500(1+)万元(n为正整数).
(Ⅰ)设从今年起的前n年,若该企业不进行技术改造的累计纯利润为
An万元,进行技术改造后的累计纯利润为Bn万元(须扣除技术改造资金),
求An、Bn的表达式;
(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的
累计纯利润超过不进行技术改造的累计纯利润?
2005年
20.(本小题满分12分)
已知函数的图象过点P(0,2),且在点M(-1,f(-1))
处的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调区间.
2006年
(20)(本小题满分12分)
已知椭圆的左焦点为F,O为坐标原点。
(I)求过点O、F,并且与椭圆的左准线相切的圆的方程;
(II)设过点F的直线交椭圆于A、B两点,并且线段AB的
中点在直线上,求直线AB的方程。
2007年
20.(本小题满分12分)
设函数.
(Ⅰ)求的最小值;
(Ⅱ)若对恒成立,求实数的取值范围.
湖北卷(文)
2004年
20.(本小题满分12分)
直线的右支交于不同的两点A、B.
(Ⅰ)求实数k的取值范围;
(Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?
若存在,求出k的值;若不存在,说明理由.
2005年
20.(本小题满分12分)
如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,
其中AB=4,BC=2,CC1=3,BE=1
(Ⅰ)求BF的长;
(Ⅱ)求点C到平面AEC1F的距离
2006年
19.(本小题满分12分)
设函数f(x)=x3-ax2+bx+c在x=1处取得极值-2,试用c表示a和b,并求f(x)
的单调区间。
2007年
19.(本小题满分12分)
设二次函数,方程的两根和满足.
(I)求实数的取值范围;
(II)试比较与的大小.并说明理由.
湖南卷(文)
2004年
20.(本小题满分12分)
已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,
a1,2a7,3a4 成等差数列.
(I)证明 12S3,S6,S12-S6成等比数列;
(II)求和Tn=a1+2a4+3a7+…+na3n-2.
2005年
19.(本小题满分14分)
设,点P(,0)是函数的图象的一个
公共点,两函数的图象在点P处有相同的切线
(Ⅰ)用表示a,b,c;
(Ⅱ)若函数在(-1,3)上单调递减,求的取值范围
2006年
19.(本小题满分14分)
已知函数f(x)=ax3-3x2+1-.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若曲线y=f(x)上两点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,
求实数a的取值范围.
2007年
19.(本小题满分13分)
已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,
点的坐标是.
(I)证明,为常数;
(II)若动点满足(其中为坐标原点),求点的轨迹方程.
广东卷(文)
2004年
20 (12分)某中心接到其正东、正西、正北方向三个观测点的报告:正西、
正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观
测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生
的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)
2005年
18.(本小题满分12分)
箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为s:t.
现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则
将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n次,
以ξ表示取球结束时已取到白球的次数.
(Ⅰ)求ξ的分布列;
(Ⅱ)求ξ的数学期望.
2006年
18.(本小题满分14分)
设函数f(x)=-x3+3x+2分别在x1、x2处取得极小值、极大值。xoy平面
上点A、B的坐标分别为(x1,f(x1))、(x2,f(x2))。该平面上动点P满
足,点Q是点P关于直线y=2(x-4)的对称点,求:
(Ⅰ)点A、B的坐标:
(Ⅱ)动点Q的轨迹方程。
2007年
19.(本小题满分14分)
在平面直角坐标系中,已知圆心在第二象限,半径为的圆与直线
相切于坐标原点,椭圆与圆的一个交点到椭圆两焦点的距离之和为.
(1)求圆的方程;
(2)试探究圆上是否存在异于原点的点,使到椭圆右焦点的距离等于
线段的长.若存在,请求出点的坐标;若不存在,请说明理由.
重庆卷(文)
2004年
20.(本小题满分12分)
某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格
(元/吨)之间的关系式为:,且生产x吨的成本为(元)。
问该产每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)
2005年
20.(本小题满分13分)
如图,在四棱锥P—ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点,
PE⊥EC. 已知求
(Ⅰ)异面直线PD与EC的距离;
(Ⅱ)二面角E—PC—D的大小.
2006年
(20)(本小题满分12分)
如图,在正四棱柱ABCD-A1B1C1D1中:AB=1,BB1=+1,E为BB1上
使B1E=1的点,平面AEC1交DD1于F,交A1D1的延长线于G.求:
(Ⅰ)异面直线AD与C1G所成的角的大小;
(Ⅱ)二面角A-C1G-A1的正切值.
2007年
20.(本小题满分12分)
用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为,
问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
山东卷(文)
2005年
(20) (本小题满分12分)
如图,已知长方体,,直线与平面
所成的角为,垂直于为的中点.
(Ⅰ)求异面直线与所成的角;
(Ⅱ)求平面与平面所成二面角(锐角)的大小;
(Ⅲ)求点到平面的距离
2006年
(20) (本小题满分12分)
如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥CD,AC⊥BD,AC与BD
相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=,PB⊥PD.
(Ⅰ)求异面直线PD与BC所成角的余弦值;
(Ⅱ)求二面角P-AB-C的大小;
(Ⅲ)设点M在棱PC上,且为何值时,PC⊥平面BMD.
2007年
20.(本小题满分12分)
如图,在直四棱柱中,
已知,.
(1)求证:;
(2)设是上一点,试确定的位置,
使平面
,并说明理由.
江西卷(文)
2005年
20.(本小题满分12分)
如图,在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1—EC—D的大小为.
2006年
20.(本小题满分12分)
如图,已知三棱锥O-ABC的侧棱OA、OB、OC两两垂直,且OA=1,OB=OC=2,
E是OC的中点.
(1)求O点到面ABC的距离;
(2)求异面直线BE与AC所成的角;
(3)求二面角E-AB-C的大小.
2007年
20.(本小题满分12分)
右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.
已知,,,,.
(1)设点是的中点,证明:平面;
(2)求与平面所成的角的大小;
(3)求此几何体的体积.
陕西卷(文)
2006年
20.(本小题满分12分)
已知正项数列,其前n项和Sn满足10Sn=+5an+6,
且a1,a3,a15成等比数列,求数列的通项an.
2007年
20.(本小题满分12分)
已知实数列是等比数列,其中,且,成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)数列的前项和记为,证明:.
四川卷(文)
2006年
(20)(本大题满分12分)
如图,在长方体中,分别是的中点,
分别是的中点,
(Ⅰ)求证:面;
(Ⅱ)求二面角的大小。
2007年
(20)(本小题满分12分)
设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线
与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在〔-1,3〕上的最大值和最小值.
安徽卷(文)
2006年
(20)(本大题满分12分)设函数,已知
是奇函数。
(Ⅰ)求、的值。
(Ⅱ)求的单调区间与极值。
2007年
19.(本小题满分13分)
在医学生物试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,
不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把
笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.
(I)求笼内恰好剩下1只果蝇的概率;
(II)求笼内至少剩下5只果蝇的概率.
海南宁夏卷(文)
2007年
20.(本小题满分12分)
设有关于的一元二次方程.
(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,
求上述方程有实根的概率.
(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,
求上述方程有实根的概率.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。