三、解答题
(20)(本小题满分12分)
设函数在
及
时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有
成立,求c的取值范围.
解:
(Ⅰ),
因为函数在
及
取得极值,则有
,
.
即
解得,
.
(Ⅱ)由(Ⅰ)可知,,
.
当时,
;
当时,
;
当时,
.
所以,当时,
取得极大值
,又
,
.
则当时,
的最大值为
.
因为对于任意的,有
恒成立,
所以 ,
解得 或
,
因此的取值范围为
.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。