解答题
全国卷Ⅰ(文)
(20)(本小题满分12分)
设函数在及时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有成立,求c的取值范围.
全国卷Ⅱ(文)
20.(本小题满分12分)
如图,在四棱锥中,
底面为正方形,侧棱底面
分别为的中点.
(1)证明平面;
(2)设,求二面角的大小.
北京卷(文)
18.(本小题共12分)
某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆
公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:
(I)这6位乘客在其不相同的车站下车的概率;
(II)这6位乘客中恰有3人在终点站下车的概率;
天津卷(文)
(20)(本小题满分12分)
在数列中,,,.
(Ⅰ)证明数列是等比数列;
(Ⅱ)求数列的前项和;
(Ⅲ)证明不等式,对任意皆成立.
上海卷(文)
19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
已知函数,常数.
(1)当时,解不等式;
(2)讨论函数的奇偶性,并说明理由.
辽宁卷(文)
20.(本小题满分12分)
已知数列,满足,,且()
(I)令,求数列的通项公式;
(II)求数列的通项公式及前项和公式.
江苏卷
20.(本题满分16分)
已知是等差数列,是公比为的等比数列,,,
记为数列的前项和.
(1)若(是大于的正整数),求证:;(4分)
(2)若(是某个正整数),求证:是整数,且数列中的每一项
都是数列中的项;(8分)
(3)是否存在这样的正数,使等比数列中有三项成等差数列?
若存在,写出一个的值,并加以说明;若不存在,请说明理由.(4分)
浙江卷(文)
21.(本题15分)如图,直线与椭圆交于两点,记的面积为.
(I)求在,的条件下,的最大值;
(II)当,时,求直线的方程.
福建卷(文)
20.(本小题满分12分)
设函数.
(Ⅰ)求的最小值;
(Ⅱ)若对恒成立,求实数的取值范围.
湖北卷(文)
19.(本小题满分12分)
设二次函数,方程的两根和满足.
(I)求实数的取值范围;
(II)试比较与的大小.并说明理由.
湖南卷(文)
19.(本小题满分13分)
已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,
点的坐标是.
(I)证明,为常数;
(II)若动点满足(其中为坐标原点),求点的轨迹方程.
广东卷(文)
19.(本小题满分14分)
在平面直角坐标系中,已知圆心在第二象限,半径为的圆与直线
相切于坐标原点,椭圆与圆的一个交点到椭圆两焦点的距离之和为.
(1)求圆的方程;
(2)试探究圆上是否存在异于原点的点,使到椭圆右焦点的距离等于
线段的长.若存在,请求出点的坐标;若不存在,请说明理由.
重庆卷(文)
20.(本小题满分12分)
用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为,
问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
山东卷(文)
20.(本小题满分12分)
如图,在直四棱柱中,
已知,.
(1)求证:;
(2)设是上一点,试确定的位置,
使平面
,并说明理由.
江西卷(文)
20.(本小题满分12分)
右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.
已知,,,,.
(1)设点是的中点,证明:平面;
(2)求与平面所成的角的大小;
(3)求此几何体的体积.
陕西卷(文)
20.(本小题满分12分)
已知实数列是等比数列,其中,且,成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)数列的前项和记为,证明:.
四川卷(文)
(20)(本小题满分12分)
设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线
与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在〔-1,3〕上的最大值和最小值.
安徽卷(文)
19.(本小题满分13分)
在医学生物试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,
不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把
笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.
(I)求笼内恰好剩下1只果蝇的概率;
(II)求笼内至少剩下5只果蝇的概率.
海南宁夏卷(文)
20.(本小题满分12分)
设有关于的一元二次方程.
(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,
求上述方程有实根的概率.
(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,
求上述方程有实根的概率.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。