三.解答题
16.(本题满分12分)
如图,在体积为1的直三棱柱
中,
.
求直线与平面
所成角的大小
(结果用反三角函数值表示).
17.(本题满分14分)
在中,
分别是三个内角
的对边.若
,
,
求的面积
.
18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量
达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递
增2%(如,2003年的年生产量的增长率为36%).
(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);
(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年
的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持
在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产
量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精
确到0.1%)?
19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
已知函数,常数
.
(1)讨论函数的奇偶性,并说明理由;
(2)若函数在
上为增函数,求
的取值范围.
20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,
第3小题满分9分.
如果有穷数列(
为正整数)满足条件
,
,
…,,即
(
),我们称其为“对称数列”.例如,
由组合数组成的数列就是“对称数列”.
(1)设是项数为7的“对称数列”,其中
是等差数列,且
,
.依次写出
的每一项;
(2)设是项数为
(正整数
)的“对称数列”,其中
是
首项为,公差为
的等差数列.记
各项的和为
.当
为何值时,
取得最大值?并求出
的最大值;
(3)对于确定的正整数,写出所有项数不超过
的“对称数列”,
使得依次是该数列中连续的项;当
时,求其中一个
“对称数列”前项的和
.
21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分8分.
我们把由半椭圆
与半椭圆
合成的曲线称作“果圆”,
其中,
,
.
如图,点
,
,
是相应椭圆的焦点,
,
和
,
分别是“果圆”与
,
轴的交点.
(1)若是边长为1的等边三角形,求
“果圆”的方程;
(2)当时,求
的取值范围;
(3)连接“果圆”上任意两点的线段称为“果圆”
的弦.试研究:是否存在实数,使斜率为
的“果圆”
平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的值;
若不存在,说明理由.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。