三、解答题
(17)(本小题满分12分)
设数列满足,.
(Ⅰ)求数列的通项;
(Ⅱ)设,求数列的前项和.
(18)(本小题满分12分)
设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程
实根的个数(重根按一个计).
(Ⅰ)求方程有实根的概率;
(Ⅱ)求的分布列和数学期望;
(Ⅲ)求在先后两次出现的点数中有5的条件下,方程有实根的概率.
(19)(本小题满分12分)
如图,在直四棱柱中,已知,,.
(Ⅰ)设是的中点,求证:平面;
(Ⅱ)求二面角的余弦值.
(20)(本小题满分12分)
如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线
航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船
相距海里,当甲船航行分钟到达处时,
乙船航行到甲船的北偏西方向
的处,此时两船相距海里,
问乙船每小时航行多少海里?
(21)(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的
最大值为,最小值为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆相交于,两点(不是左右顶点),
且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
(22)(本小题满分14分)
设函数,其中.
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)求函数的极值点;
(Ⅲ)证明对任意的正整数,不等式都成立.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。