面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高考题 > 2023 > 2023年新高考1

2023年高考数学新高考Ⅰ-8

(5分)已知$\sin (\alpha -\beta )=\dfrac{1}{3}$,$\cos \alpha \sin \beta =\dfrac{1}{6}$,则$\cos (2\alpha +2\beta )=($  $)$
A.$\dfrac{7}{9}$              B.$\dfrac{1}{9}$              C.$-\dfrac{1}{9}$              D.$-\dfrac{7}{9}$
答案:$B$
分析:由已知结合和差角公式先求出$\sin \alpha \cos \beta$,再求出$\sin (\alpha +\beta )$,然后结合二倍角公式可求.
解:因为$\sin (\alpha -\beta )=\sin \alpha \cos \beta -\sin \beta \cos \alpha =\dfrac{1}{3}$,$\cos \alpha \sin \beta =\dfrac{1}{6}$,
所以$\sin \alpha \cos \beta =\dfrac{1}{2}$,
所以$\sin (\alpha +\beta )=\sin \alpha \cos \beta +\sin \beta \cos \alpha =\dfrac{1}{2}+\dfrac{1}{6}=\dfrac{2}{3}$,
则$\cos (2\alpha +2\beta )=1-2\sin ^{2}(\alpha +\beta )=1-2\times \dfrac{4}{9}=\dfrac{1}{9}$.
故选:$B$.
点评:本题主要考查了和差角公式,二倍角公式的应用,属于中档题.
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
三角函数
发表笔记 共有条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝