(5分)已知$\sin (\alpha -\beta )=\dfrac{1}{3}$,$\cos \alpha \sin \beta =\dfrac{1}{6}$,则$\cos (2\alpha +2\beta )=($ $)$ A.$\dfrac{7}{9}$ B.$\dfrac{1}{9}$ C.$-\dfrac{1}{9}$ D.$-\dfrac{7}{9}$ 答案:$B$ 分析:由已知结合和差角公式先求出$\sin \alpha \cos \beta$,再求出$\sin (\alpha +\beta )$,然后结合二倍角公式可求. 解:因为$\sin (\alpha -\beta )=\sin \alpha \cos \beta -\sin \beta \cos \alpha =\dfrac{1}{3}$,$\cos \alpha \sin \beta =\dfrac{1}{6}$, 所以$\sin \alpha \cos \beta =\dfrac{1}{2}$, 所以$\sin (\alpha +\beta )=\sin \alpha \cos \beta +\sin \beta \cos \alpha =\dfrac{1}{2}+\dfrac{1}{6}=\dfrac{2}{3}$, 则$\cos (2\alpha +2\beta )=1-2\sin ^{2}(\alpha +\beta )=1-2\times \dfrac{4}{9}=\dfrac{1}{9}$. 故选:$B$. 点评:本题主要考查了和差角公式,二倍角公式的应用,属于中档题.
|