面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高考题 > 2022 > 2022年新高考2

2022年高考数学新高考Ⅱ-21

(12分)已知双曲线$C:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a > 0,b > 0)$的右焦点为$F(2,0)$,渐近线方程为$y=\pm \sqrt{3}x$.
(1)求$C$的方程;
(2)过$F$的直线与$C$的两条渐近线分别交于$A$,$B$两点,点$P(x_{1}$,$y_{1})$,$Q(x_{2}$,$y_{2})$在$C$上,且$x_{1} > x_{2} > 0$,$y_{1} > 0$.过$P$且斜率为$-\sqrt{3}$的直线与过$Q$且斜率为$\sqrt{3}$的直线交于点$M$.从下面①②③中选取两个作为条件,证明另外一个成立.
①$M$在$AB$上;②$PQ//AB$;③$\vert MA\vert =\vert MB\vert$.
注:若选择不同的组合分别解答,则按第一个解答计分.
分析:(1)根据渐近线方程和$a^{2}+b^{2}=c^{2}$即可求出;
(2)法一:首先求出点$M$的轨迹方程即为$y_{M}=\dfrac{3}{k}x_{M}$,其中$k$为直线$PQ$的斜率,
若选择①②:设直线$AB$的方程为$y=k(x-2)$,求出点$M$的坐标,可得$M$为$AB$的中点,即可$\vert MA\vert =\vert MB\vert$;
若选择①③:当直线$AB$的斜率存在时,设直线$AB$的方程为$y=m(x-2)(m\ne 0)$,求出点$M$的坐标,即可$PQ//AB$;
若选择②③:设直线$AB$的方程为$y=k(x-2)$,设$AB$的中点$C(x_{C}$,$y_{C})$,求出点$C$的坐标,可得点$M$恰为$AB$中点,故点$M$在直线$AB$上.
法二:直线$AB$的斜率存在且不为0,直线$AB$的斜率为$k$,直线$AB$的方程为$y=k(x-2)$.条件①$M$在$AB$上等价于$m=k\Leftrightarrow ky_{0}=k^{2}(x_{0}-2)$,条件②$PQ//AB$等价于$ky_{0}=3x_{0}$,条件③$\vert AM\vert =\vert BM\vert$等价于${x}_{0}+k{y}_{0}=\dfrac{8{k}^{2}}{{k}^{2}-3}$.再从①②③中选两个条件,证明第三个条件成立.
解:(1)由题意可得$\dfrac{b}{a}=\sqrt{3}$,$\sqrt{{a}^{2}+{b}^{2}}=2$,
解得$a=1$,$b=\sqrt{3}$,
因此$C$的方程为$x^{2}-\dfrac{{y}^{2}}{3}=1$,
(2)解法一:设直线$PQ$的方程为$y=kx+m$,$(k\ne 0)$,将直线$PQ$的方程代入$x^{2}-\dfrac{{y}^{2}}{3}=1$可得$(3-k^{2})x^{2}-2kmx-m^{2}-3=0$,
△$=12(m^{2}+3-k^{2}) > 0$,
$\because x_{1} > x_{2} > 0$
$\therefore x_{1}+x_{2}=\dfrac{2km}{3-{k}^{2}} > 0$,$x_{1}x_{2}=-\dfrac{{m}^{2}+3}{3-{k}^{2}} > 0$,
$\therefore 3-k^{2} < 0$,
$\therefore x_{1}-x_{2}=\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}=\dfrac{2\sqrt{3}\cdot \sqrt{{m}^{2}+3-{k}^{2}}}{{k}^{2}-3}$,
设点$M$的坐标为$(x_{M}$,$y_{M})$,则$\left\{\begin{array}{l}{{y}_{M}-{y}_{1}=-\sqrt{3}({x}_{M}-{x}_{1})}\\ {{y}_{M}-{y}_{2}=\sqrt{3}({x}_{M}-{x}_{2})}\end{array}\right.$,
两式相减可得$y_{1}-y_{2}=2\sqrt{3}x_{M}-\sqrt{3}(x_{1}+x_{2})$,
$\because y_{1}-y_{2}=k(x_{1}-x_{2})$,
$\therefore 2\sqrt{3}x_{M}=\sqrt{3}(x_{1}+x_{2})+k(x_{1}-x_{2})$,
解得$X_{M}=\dfrac{k\sqrt{{m}^{2}+3-{k}^{2}}-\;km}{{k}^{2}-3}$,
两式相加可得$2y_{M}-(y_{1}+y_{2})=\sqrt{3}(x_{1}-x_{2})$,
$\because y_{1}+y_{2}=k(x_{1}+x_{2})+2m$,
$\therefore 2y_{M}=\sqrt{3}(x_{1}-x_{2})+k(x_{1}+x_{2})+2m$,
解得$y_{M}=\dfrac{3\sqrt{{m}^{2}+3-{k}^{2}}-3m}{{k}^{2}-3}$,
$\therefore y_{M}=\dfrac{3}{k}x_{M}$,其中$k$为直线$PQ$的斜率;
若选择①②:
设直线$AB$的方程为$y=k(x-2)$,并设$A$的坐标为$(x_{3}$,$y_{3})$,$B$的坐标为$(x_{4}$,$y_{4})$,
则$\left\{\begin{array}{l}{{y}_{3}=k({x}_{3}-2)}\\ {{y}_{3}=\sqrt{3}{x}_{3}}\end{array}\right.$,解得$x_{3}=\dfrac{2k}{k-\sqrt{3}}$,$y_{3}=\dfrac{2\sqrt{3}k}{k-\sqrt{3}}$,
同理可得$x_{4}=\dfrac{2k}{k+\sqrt{3}}$,$y_{4}=-\dfrac{2\sqrt{3}k}{k+\sqrt{3}}$,
$\therefore x_{3}+x_{4}=\dfrac{4{k}^{2}}{{k}^{2}-3}$,$y_{3}+y_{4}=\dfrac{12k}{{k}^{2}-3}$,
此时点$M$的坐标满足$\left\{\begin{array}{l}{{y}_{M}=k({x}_{M}-2)}\\ {{y}_{M}=\dfrac{3}{k}{x}_{M}}\end{array}\right.$,解得$X_{M}=\dfrac{2{k}^{2}}{{k}^{2}-3}=\dfrac{1}{2}(x_{3}+x_{4})$,$y_{M}=\dfrac{6k}{{k}^{2}-3}=\dfrac{1}{2}(y_{3}+y_{4})$,
$\therefore M$为$AB$的中点,即$\vert MA\vert =\vert MB\vert$;
若选择①③:
当直线$AB$的斜率不存在时,点$M$即为点$F(2,0)$,此时不在直线$y=\dfrac{3}{k}x$上,矛盾,
当直线$AB$的斜率存在时,设直线$AB$的方程为$y=m(x-2)(m\ne 0)$,并设$A$的坐标为$(x_{3}$,$y_{3})$,$B$的坐标为$(x_{4}$,$y_{4})$,
则$\left\{\begin{array}{l}{{y}_{3}=m({x}_{3}-2)}\\ {{y}_{3}=\sqrt{3}{x}_{3}}\end{array}\right.$,解得$x_{3}=\dfrac{2m}{m-\sqrt{3}}$,$y_{3}=\dfrac{2\sqrt{3}m}{m-\sqrt{3}}$,
同理可得$x_{4}=\dfrac{2m}{m+\sqrt{3}}$,$y_{4}=-\dfrac{2\sqrt{3}m}{m+\sqrt{3}}$,
此时$x_{M}=\dfrac{1}{2}(x_{3}+x_{4})=\dfrac{2{m}^{2}}{{m}^{2}-3}$,
$\therefore y_{M}=\dfrac{1}{2}(y_{3}+y_{4})=\dfrac{6m}{{m}^{2}-3}$,
由于点$M$同时在直线$y=\dfrac{3}{k}x$上,故$6m=\dfrac{3}{k}\cdot 2m^{2}$,解得$k=m$,
因此$PQ//AB$.
若选择②③,
设直线$AB$的方程为$y=k(x-2)$,并设$A$的坐标为$(x_{3}$,$y_{3})$,$B$的坐标为$(x_{4}$,$y_{4})$,
则$\left\{\begin{array}{l}{{y}_{3}=k({x}_{3}-2)}\\ {{y}_{3}=\sqrt{3}{x}_{3}}\end{array}\right.$,解得$x_{3}=\dfrac{2k}{k-\sqrt{3}}$,$y_{3}=\dfrac{2\sqrt{3}k}{k-\sqrt{3}}$,
同理可得$x_{4}=\dfrac{2k}{k+\sqrt{3}}$,$y_{4}=-\dfrac{2\sqrt{3}k}{k-\sqrt{3}}$,
设$AB$的中点$C(x_{C}$,$y_{C})$,则$x_{C}=\dfrac{1}{2}(x_{3}+x_{4})=\dfrac{2{k}^{2}}{{k}^{2}-3}$,$y_{C}=\dfrac{1}{2}(y_{3}+y_{4})=\dfrac{6k}{{k}^{2}-3}$,
由于$\vert MA\vert =\vert MB\vert$,故$M$在$AB$的垂直平分线上,即点$M$在直线$y-y_{C}=-\dfrac{1}{k}(x-x_{C})$上,
将该直线$y=\dfrac{3}{k}x$联立,解得$x_{M}=\dfrac{2{k}^{2}}{{k}^{2}-3}=x_{C}$,$y_{M}=\dfrac{6k}{{k}^{2}-3}=y_{C}$,
即点$M$恰为$AB$中点,故点$M$在直线$AB$上.
(2)解法二:由已知得直线$PQ$的斜率存在且不为零,直线$AB$的斜率不为零,
若选由①②$\Rightarrow$③,或选由②③$\Rightarrow$①:由②成立可知直线$AB$的斜率存在且不为0.
若选①③$\Rightarrow$②,则$M$为线段$AB$的中点,假设$AB$的斜率不存在,
则由双曲线的对称性可知$M$在$x$轴上,即为焦点$F$,
此时由对称性可知$P$、$Q$关于$x$轴对称,从而$x_{1}=x_{2}$,已知不符.
综上,直线$AB$的斜率存在且不为0,
直线$AB$的斜率为$k$,直线$AB$的方程为$y=k(x-2)$.
则条件①$M$在直线$AB$上,等价于$y_{0}=k(x_{0}-2)\Leftrightarrow ky_{0}=k^{2}(x_{0}-2)$,
两渐近线的方程合并为$3x^{2}-y^{2}=0$,
联立方程组,消去$y$并化简得:$(k^{2}-3)x^{2}-4k^{2}x+4k^{2}=0$,
设$A(x_{3}$,$y_{3})$,$B(x_{4}$,$y_{4})$,线段中点为$N(x_{N}$,$y_{N})$,
则$x_{N}=\dfrac{{x}_{3}+{x}_{4}}{2}=\dfrac{2{k}^{2}}{{k}^{2}-3}$.$y_{N}=k(x_{N}-2)=\dfrac{6k}{{k}^{2}-3}$,
设$M(x_{0}$,$y_{0})$,
则条件③$\vert AM\vert =\vert BM\vert$等价于$(x_{0}-x_{3})^{2}+(y_{0}-y_{3})^{2}=(x_{0}-x_{4})^{2}+(y_{0}-y_{4})^{2}$,
移项并利用平方差公式整理得:
$(x_{3}-x_{4})[2x_{0}-(x_{3}+x_{4})]+(y_{3}-y_{4})[(2y_{0}-(y_{3}+y_{4})]=0$,
$[2x_{0}-(x_{3}+x_{4})]+\dfrac{{y}_{3}-{y}_{4}}{{x}_{3}-{x}_{4}}[2y_{0}-(y_{3}+y_{4})]=0$,
$\therefore x_{0}-x_{N}+k(y_{0}-y_{N})=0$,
$[2x_{0}-(x_{3}+x_{4})]+\dfrac{{y}_{3}-{y}_{4}}{{x}_{3}-{x}_{4}}[2y_{0}-(y_{3}+y_{4})]=0$,
$\therefore x_{0}-x_{N}+k(y_{0}-y_{N})=0$,
$\therefore$${x}_{0}+k{y}_{0}=\dfrac{8{k}^{2}}{{k}^{2}-3}$,
由题意知直线$PM$的斜率为$-\sqrt{3}$,直线$QM$的斜率为$\sqrt{3}$,
$\therefore$由${y}_{1}-{y}_{0}=-\sqrt{3}(x_{1}-x_{0})$,$y_{2}-y_{0}=\sqrt{3}(x_{2}-x_{0})$,
$\therefore y_{1}-y_{2}=-\sqrt{3}(x_{1}+x_{2}-2x_{0})$,
$\therefore$直线$PQ$的斜率$m=\dfrac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=-\dfrac{\sqrt{3}({x}_{1}+{x}_{2}-2{x}_{0})}{{x}_{1}-{x}_{2}}$,
直线$PM:y=-\sqrt{3}(x-x_{0})+y_{0}$,即$y={y}_{0}+\sqrt{3}{x}_{0}-\sqrt{3}x$,
代入双曲线的方程为$3x^{2}-y^{2}-3=0$,即$(\sqrt{3}x+y)(\sqrt{3}x-y)=3$中,
得$({y}_{0}+\sqrt{3}{x}_{0})[2\sqrt{3}x-({y}_{0}+\sqrt{3}{x}_{0})]=3$,
解得$P$的横坐标为${x}_{1}=-\dfrac{1}{2\sqrt{3}}(\dfrac{3}{{y}_{0}-\sqrt{3}{x}_{0}}+{y}_{0}+\sqrt{3}{x}_{0})]=3$,
同理,$x_{2}=-\dfrac{1}{2\sqrt{3}}(\dfrac{3}{{{y}_{0}}^{2}-3{{x}_{0}}^{2}}+{y}_{0})$,$x_{1}+x_{2}-2x_{0}=-\dfrac{3{x}_{0}}{{{y}_{0}}^{2}-3{{x}_{0}}^{2}}-x_{0}$,
$\therefore m=\dfrac{3{x}_{0}}{{y}_{0}}$,
$\therefore$条件②$PQ//AB$等价于$m=k\Leftrightarrow ky_{0}=3x_{0}$,
综上所述:
条件①$M$在$AB$上等价于$m=k\Leftrightarrow ky_{0}=k^{2}(x_{0}-2)$,
条件②$PQ//AB$等价于$ky_{0}=3x_{0}$,
条件③$\vert AM\vert =\vert BM\vert$等价于${x}_{0}+k{y}_{0}=\dfrac{8{k}^{2}}{{k}^{2}-3}$.
选①②$\Rightarrow$③:
由①②解得${x}_{0}=\dfrac{2{k}^{2}}{{k}^{2}-3}$$\therefore$${x}_{0}+k{y}_{0}=4{x}_{0}=\dfrac{8{k}^{2}}{{k}^{2}-3}$,$\therefore$③成立;
选①③$\Rightarrow$②:
由①③解得:${x}_{0}=\dfrac{2{k}^{2}}{{k}^{2}-3}$,$ky_{0}=\dfrac{6{k}^{2}}{{k}^{2}-3}$,$\therefore ky_{0}=3x_{0}$,$\therefore$②成立;
选②③$\Rightarrow$①:
由②③解得:${x}_{0}=\dfrac{2{k}^{2}}{{k}^{2}-3}$,$ky_{0}=\dfrac{6{k}^{2}}{{k}^{2}-3}$,$\therefore$${x}_{0}-2=\dfrac{6}{{k}^{2}-3}$,$\therefore$①成立.
点评:本题考查了直线和双曲线的位置关系,考查了运算求解能力,转化与化归能力,属于难题.
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
圆锥曲线
发表笔记 共有条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝