2004年
解答题
17.(本小题满分12分)
18.(本小题满分12分)
如图,在底面 是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,
PB=PD=,点E是PD的中点.
(I)证明PA⊥平面ABCD,PB∥平面EAC;
(II)求以AC为棱,EAC与DAC为面的二面角的正切值.
19.(本小题满分12分)
甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的
零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的
零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机
床加工的零件都是一等品的概率为.
(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;
(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.
20.(本小题满分12分)
已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,
a1,2a7,3a4 成等差数列.
(I)证明 12S3,S6,S12-S6成等比数列;
(II)求和Tn=a1+2a4+3a7+…+na3n-2.
21.(本小题满分12分)
如图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于O,A,
直线x=t(0<t<1)与曲线C1,C2分别交于B,D.
(Ⅰ)写出四边形ABOD的面积S与t的函数关系式S=f(t);
(Ⅱ)讨论f(t)的单调性,并求f(t) 的最大值.
22.(本小题满分14分)
如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线
交于A,B两点,点Q是点P关于原点的对称点。
(I)设点P分有向线段所成的比为,证明:
(II)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有
共同的切线,求圆C的方程.
2005年
解答题
16.(本小题满分12分)
已知数列为等差数列,且
(Ⅰ)求数列的通项公式;
(Ⅱ)证明
17.(本小题满分12分)
已知在△ABC中,sinA(sinB+cosB)-sinC=0,sinB+cos2C=0,
求角A、B、C的大小.
18.(本题满分12分)
如图1,已知ABCD是上.下底边长分别为2和6,高为的等腰梯形,
将它沿对称轴OO1折成直二面角,如图2.
(Ⅰ)证明:AC⊥BO1;
(Ⅱ)求二面角O-AC-O1的大小.
解答 图1
19.(本小题满分14分)
设,点P(,0)是函数的图象的一个
公共点,两函数的图象在点P处有相同的切线
(Ⅰ)用表示a,b,c;
(Ⅱ)若函数在(-1,3)上单调递减,求的取值范围
20.(本小题满分14分)
某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界
3个景区中任选一个,假设各部门选择每个景区是等可能的.
(Ⅰ)求3个景区都有部门选择的概率;
(Ⅱ)求恰有2个景区有部门选择的概率
21.(本小题满分14分)
已知椭圆C:+=1(a>b>0)的左.右焦点为F1、F2,离心率为e.
直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公
共点,P是点F1关于直线l的对称点,设=λ.
(Ⅰ)证明:λ=1-e2;
(Ⅱ)若,△PF1F2的周长为6;写出椭圆C的方程;
(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.
2006
解答题16.(本小题满分12分)
已知·cosθ=1,θ∈(0,π),求θ的值.
17.(本小题满分12分)
某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,
则必须整改.若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格
是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率
是0.8,计算(结果精确到0.01):
(Ⅰ)恰好有两家煤矿必须整改的概率;
(Ⅱ)平均有多少家煤矿必须整改;
(Ⅲ)至少关闭一家煤矿的概率.
18.(本小题满分14分)
如图2,已知两个正四棱锥P-ABCD与Q-ABCD的高都为2,AB=4.
(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.
19.(本小题满分14分)
已知函数f(x)=ax3-3x2+1-.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若曲线y=f(x)上两点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,
求实数a的取值范围.
20.(本小题满分14分)
在m(m≥2)个不同数的排列p1p2…pm中,若1≤i<j≤m时pi>pj (即前面某数大
于后面某数),则称与构成一个逆序.一个排列的全部逆序的总数称为该排列的逆
序数.记排列(n+1)n(n-1)…321的逆序数为,如排列21的逆序数=1,排列321的逆
序数=3,排列4321的逆序数=6.
(Ⅰ)求、,并写出的表达式;
(Ⅱ)令=,证明 2n<++…+<2n+3, n=1,2,….
21.(本小题满分14分)
已知椭圆C1∶=1,抛物线C2∶(y-m)2=2px(p>0),且C1、C2的公共弦AB
过椭圆C1的右焦点.
(Ⅰ)当AB⊥x轴时,求p、m的值,并判断抛物线C2的焦点是否在直线AB上;
(Ⅱ)若P=且抛物线C2的焦点在直线AB上,求m的值及AB的方程.
2007年
解答题
16.(本小题满分12分)
已知函数.求:
(I)函数的最小正周期;
(II)函数的单调增区间.
17.(本小题满分12分)
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,
每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加
过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选
择是相互独立的,且各人的选择相互之间没有影响.
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率.
18.(本小题满分12分)
如图3,已知直二面角,,,,,,
直线和平面所成的角为.
(I)证明;
(II)求二面角的大小.
19.(本小题满分13分)
已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,
点的坐标是.
(I)证明,为常数;
(II)若动点满足(其中为坐标原点),求点的轨迹方程.
20.(本小题满分13分)
设是数列()的前项和,,且,,.
(I)证明:数列()是常数数列;
(II)试找出一个奇数,使以18为首项,7为公比的等比数列()中
的所有项都是数列中的项,并指出是数列中的第几项.
21.(本小题满分13分)
已知函数在区间,内各有一个极值点.
(I)求的最大值;
(II)当时,设函数在点处的切线为,若在点处穿过
函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧
进入另一侧),求函数的表达式.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。