活在当下,做最好的自己!

收藏夹
我的
首页 > 数学 > 高考题 > 2024 > 2024年天津

2024年高考数学天津14

(5分)在正方形$ABCD$中,边长为1.$E$为线段$CD$的三等分点,$\overrightarrow{EC}=\dfrac{1}{2}\overrightarrow{DE}$,$\overrightarrow{BE}=\lambda \overrightarrow{BA}+\mu \overrightarrow{BC}$,则$\lambda +\mu =$____;若$F$为线段$BE$上的动点,$G$为$AF$中点,则$\overrightarrow{AF}\cdot \overrightarrow{DG}$的最小值为 ____.

答案:$\dfrac{4}{3}$;$-\dfrac{5}{18}$.
分析:由题意可知$\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AD}+\overrightarrow{DE}$,再结合$\overrightarrow{EC}=\dfrac{1}{2}\overrightarrow{DE}$可得$\overrightarrow{BE}=\dfrac{1}{3}\overrightarrow{BA}+\overrightarrow{BC}$,进而求出$\lambda$,$\mu$的值,得到$\lambda +\mu$的值;设$\overrightarrow{BF}=m\overrightarrow{BE}(0\leqslant m\leqslant 1)$,可得$\overrightarrow{AF}=(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}$,$\overrightarrow{DG}=(\dfrac{1}{6}m-\dfrac{1}{2})\overrightarrow{BA}+(\dfrac{1}{2}m-1)\overrightarrow{BC}$,易知${\overrightarrow{BA}}^{2}=1$,$\overrightarrow{BA}\cdot \overrightarrow{BC}=0$,即可求出$\overrightarrow{AF}\cdot \overrightarrow{DG}$,再结合二次函数的性质求解即可.
解:由题意可知,$\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AD}+\overrightarrow{DE}=\overrightarrow{BA}+\overrightarrow{BC}+\dfrac{2}{3}\overrightarrow{DC}=\overrightarrow{BA}+\overrightarrow{BC}-\dfrac{2}{3}\overrightarrow{CD}=\overrightarrow{BA}+\overrightarrow{BC}-\dfrac{2}{3}\overrightarrow{BA}=\dfrac{1}{3}\overrightarrow{BA}+\overrightarrow{BC}$,
$\therefore$$\lambda =\dfrac{1}{3}$,$\mu =1$,
$\therefore \lambda +\mu =\dfrac{4}{3}$,
如图:

设$\overrightarrow{BF}=m\overrightarrow{BE}(0\leqslant m\leqslant 1)$,
则$\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{BF}=-\overrightarrow{BA}+m\overrightarrow{BE}=-\overrightarrow{BA}+m(\dfrac{1}{3}\overrightarrow{BA}+\overrightarrow{BC})=(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}$,
$\because G$为$AF$中点,
$\therefore$$\overrightarrow{DG}=\overrightarrow{DA}+\overrightarrow{AG}=-\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{AF}=-\overrightarrow{BC}+\dfrac{1}{2}[(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}]=(\dfrac{1}{6}m-\dfrac{1}{2})\overrightarrow{BA}+(\dfrac{1}{2}m-1)\overrightarrow{BC}$,
$\because$正方形$ABCD$的边长为1,
$\therefore$${\overrightarrow{BA}}^{2}=1$,$\overrightarrow{BA}\cdot \overrightarrow{BC}=0$,
$\therefore$$\overrightarrow{AF}\cdot \overrightarrow{DG}=[(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}]\cdot [(\dfrac{1}{6}m-\dfrac{1}{2})\overrightarrow{BA}+(\dfrac{1}{2}m-1)\overrightarrow{BC}]=(\dfrac{1}{3}m-1)(\dfrac{1}{6}m-\dfrac{1}{2})+m(\dfrac{1}{2}m-1)=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}$,
对于函数$y=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}$,对称轴为$m=\dfrac{6}{5}$,
$\therefore$函数$y=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}$在$[0$,$1]$上单调递减,
$\therefore$当$m=1$时,函数$y=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}$取得最小值$-\dfrac{5}{18}$,
即$\overrightarrow{AF}\cdot \overrightarrow{DG}$的最小为$-\dfrac{5}{18}$.
故答案为:$\dfrac{4}{3}$;$-\dfrac{5}{18}$.
点评:本题主要考查了平面向量的线性运算和数量积运算,考查了二次函数的性质,属于中档题.
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
    无相关信息
发表笔记 共有条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝