br>
2023年高考数学新高考Ⅱ-14<-->2023年高考数学新高考Ⅱ-16
(5分)已知直线$x-my+1=0$与$\odot C:(x-1)^{2}+y^{2}=4$交于$A$,$B$两点,写出满足“$\Delta ABC$面积为$\dfrac{8}{5}$”的$m$的一个值____. 分析:由“$\Delta ABC$面积为$\dfrac{8}{5}$,求得$\sin \angle ACB=\dfrac{4}{5}$,设$\dfrac{1}{2}\angle ACB=\theta$,得到$\cos \theta$,进而求得圆心到直线的距离,结合点到直线的距离公式,列出方程,即可求解. 解:由圆$C:(x-1)^{2}+y^{2}=4$,可得圆心坐标为$C(1,0)$,半径为$r=2$, 因为$\Delta ABC$的面积为$\dfrac{8}{5}$,可得$S_{\Delta ABC}=\dfrac{1}{2}\times 2\times 2\times \sin \angle ACB=\dfrac{8}{5}$, 解得$\sin \angle ACB=\dfrac{4}{5}$,设$\dfrac{1}{2}\angle ACB=\theta$所以$\therefore 2\sin \theta \cos \theta =\dfrac{4}{5}$, 可得$\dfrac{2\sin \theta \cos \theta }{si{n}^{2}\theta +co{s}^{2}\theta }=\dfrac{4}{5}$,$\therefore$$\dfrac{2\tan \theta }{ta{n}^{2}\theta +1}=\dfrac{4}{5}$,$\therefore \tan \theta =\dfrac{1}{2}$或$\tan \theta =2$, $\therefore \cos \theta =\dfrac{2}{\sqrt{5}}$或$\cos \theta =\dfrac{1}{\sqrt{5}}$, $\therefore$圆心到直线$x-my+1=0$的距离$d=\dfrac{4}{\sqrt{5}}$或$\dfrac{2}{\sqrt{5}}$, $\therefore$$\dfrac{2}{\sqrt{1+{m}^{2}}}=\dfrac{4}{\sqrt{5}}$或$\dfrac{2}{\sqrt{1+{m}^{2}}}=\dfrac{2}{\sqrt{5}}$, 解得$m=\pm \dfrac{1}{2}$或$m=\pm 2$. 故答案为:2(或$-2$或$\dfrac{1}{2}$或$-\dfrac{1}{2})$. 点评:本题考查了直线与圆的位置关系,属于中档题.
2023年高考数学新高考Ⅱ-14<-->2023年高考数学新高考Ⅱ-16
全网搜索"2023年高考数学新高考Ⅱ-15"相关
|