br>
2023年高考数学新高考Ⅰ-19<-->2023年高考数学新高考Ⅰ-21
(12分)设等差数列$\{a_{n}\}$的公差为$d$,且$d > 1$.令$b_{n}=\dfrac{{n}^{2}+n}{{a}_{n}}$,记$S_{n}$,$T_{n}$分别为数列$\{a_{n}\}$,$\{b_{n}\}$的前$n$项和. (1)若$3a_{2}=3a_{1}+a_{3}$,$S_{3}+T_{3}=21$,求$\{a_{n}\}$的通项公式; (2)若$\{b_{n}\}$为等差数列,且$S_{99}-T_{99}=99$,求$d$. 分析:(1)根据题意及等差数列的通项公式与求和公式,建立方程组,即可求解; (2)根据题意及等差数列的通项公式的特点,可设$a_{n}=tn$,则${b}_{n}=\dfrac{n+1}{t}$,且$d=t > 1$;或设$a_{n}=k(n+1)$,则${b}_{n}=\dfrac{n}{k}$,且$d=k > 1$,再分类讨论,建立方程,即可求解. 解:(1)$\because 3a_{2}=3a_{1}+a_{3}$,$S_{3}+T_{3}=21$, $\therefore$根据题意可得$\left\{\begin{array}{l}{3({a}_{1}+d)=3{a}_{1}+{a}_{1}+2d}\\ {3{a}_{1}+3d+(\dfrac{2}{{a}_{1}}+\dfrac{6}{{a}_{1}+d}+\dfrac{12}{{a}_{1}+2d})=21}\end{array}\right.$, $\therefore$$\left\{\begin{array}{l}{{a}_{1}=d}\\ {6d+\dfrac{9}{d}=21}\end{array}\right.$, $\therefore 2d^{2}-7d+3=0$,又$d > 1$, $\therefore$解得$d=3$,$\therefore a_{1}=d=3$, $\therefore a_{n}=a_{1}+(n-1)d=3n$,$n\in N^*$; (2)$\because \{a_{n}\}$为等差数列,$\{b_{n}\}$为等差数列,且$b_{n}=\dfrac{{n}^{2}+n}{{a}_{n}}$, $\therefore$根据等差数列的通项公式的特点,可设$a_{n}=tn$,则${b}_{n}=\dfrac{n+1}{t}$,且$d=t > 1$; 或设$a_{n}=k(n+1)$,则${b}_{n}=\dfrac{n}{k}$,且$d=k > 1$, ①当$a_{n}=tn$,${b}_{n}=\dfrac{n+1}{t}$,$d=t > 1$时, 则$S_{99}-T_{99}=\dfrac{(t+99t)\times 99}{2}-(\dfrac{2}{t}+\dfrac{100}{t})\times \dfrac{99}{2}=99$, $\therefore$$50t-\dfrac{51}{t}=1$,$\therefore 50t^{2}-t-51=0$,又$d=t > 1$, $\therefore$解得$d=t=\dfrac{51}{50}$; ②当$a_{n}=k(n+1)$,${b}_{n}=\dfrac{n}{k}$,$d=k > 1$时, 则$S_{99}-T_{99}=\dfrac{(2k+100k)\times 99}{2}-(\dfrac{1}{k}+\dfrac{99}{k})\times \dfrac{99}{2}=99$, $\therefore$$51k-\dfrac{50}{k}=1$,$\therefore 51k^{2}-k-50=0$,又$d=k > 1$, $\therefore$此时$k$无解, $\therefore$综合可得$d=\dfrac{51}{50}$. 点评:本题考查等差数列的性质,等差数列的通项公式与求和公式的应用,方程思想,化归转化思想,分类讨论思想,属中档题.
2023年高考数学新高考Ⅰ-19<-->2023年高考数学新高考Ⅰ-21
全网搜索"2023年高考数学新高考Ⅰ-20"相关
|