br>
2023年高考数学北京11<-->2023年高考数学北京13
(5分)已知双曲线$C$的焦点为$(-2,0)$和$(2,0)$,离心率为$\sqrt{2}$,则$C$的方程为 ____. 答案:$\dfrac{{x}^{2}}{2}-\dfrac{{y}^{2}}{2}=1$. 分析:根据题意,建立方程,即可求解. 解:根据题意可设所求方程为$\dfrac{{x}^{2}}{{a}^{2}}-\dfrac{{y}^{2}}{{b}^{2}}=1$,$(a > 0,b > 0)$, 又$\left\{\begin{array}{l}{c=2}\\ {\dfrac{c}{a}=\sqrt{2}}\\ {{b}^{2}={c}^{2}-{a}^{2}}\end{array}\right.$,解得$a=\sqrt{2}$,$c=2$,$b=2$, $\therefore$所求方程为$\dfrac{{x}^{2}}{2}-\dfrac{{y}^{2}}{2}=1$. 故答案为:$\dfrac{{x}^{2}}{2}-\dfrac{{y}^{2}}{2}=1$. 点评:本题考查双曲线的方程的求解,方程思想,属基础题.
2023年高考数学北京11<-->2023年高考数学北京13
全网搜索"2023年高考数学北京12"相关
|