2006
解答题
(17)(本大题满分12分)
已知是三角形三内角,向量m=(-1,),n=(cosA,sinA),且mn=1.
(Ⅰ)求角;
(Ⅱ)若,求tanC.
(18)(本大题满分12分)
某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与
“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、
丙三人在理论考核中合格的概率分别为;在实验考核中合格的
概率分别为,所有考核是否合格相互之间没有影响
(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;
(Ⅱ)求这三人该课程考核都合格的概率。(结果保留三位小数)
(19)(本大题满分12分)
如图,在长方体中,分别是的中点,
分别是的中点,
(Ⅰ)求证:面;
(Ⅱ)求二面角的大小。
(Ⅲ)求三棱锥的体积。
(20)(本大题满分12分)
已知数列,其中,记数列的前项
和为,数列的前项和为
(Ⅰ)求;
(Ⅱ)设,
(其中为的导函数),计算
(21)(本小题满分14分)
已知两定点,满足条件的点的轨迹
是曲线,直线与曲线交于两点,如果,
且曲线上存在点,使,求的值和的面积S。
(22)(本小题满分14分)
已知函数,的导函数是,
对任意两个不相等的正数,证明:
(Ⅰ)当时,
(Ⅱ)当时,
2007
解答题
(17)(本小题满分12分)已知<<<,
(Ⅰ)求的值.
(Ⅱ)求.
(18)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批
产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定
是否接收这批产品.
(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.
求至少有1件是合格品的概率;
(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任
取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可
能检验出不合格产品数的分布列及期望,并求该商家拒收这批产品的概率.
(19)(本小题满分12分)如图,是直角梯形,∠=90°,∥,
=1,=2,又=1,∠=120°,⊥,直线与直线所成
的角为60°.
(Ⅰ)求证:平面⊥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱锥的体积.
(20)(本小题满分12分)设、分别是椭圆的左、右焦点.
(Ⅰ)若是该椭圆上的一个动点,求·的最大值和最小值;
(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且∠为锐角
(其中为坐标原点),求直线的斜率的取值范围.
(21)(本小题满分12分)
已知函数,设曲线在点处的切线与X轴的交点,
其中x1为正实数。
(Ⅰ)用xn表示xn+1;
(Ⅱ)求证:对一切正整数n,的充要条件是;
(Ⅲ)若x1=4,记,证明数列{an}成等比数列,并求数列{an}的通项公式。
(22)(本小题满分14分)
设函数.
(Ⅰ)当x=6时,求的展开式中二项式系数最大的项;
(Ⅱ)对任意的实数x,证明>
(Ⅲ)是否存在,使得an<<恒成立?若存在,试证明你的结论
并求出a的值;若不存在,请说明理由.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。