三、解答题

(22)(本小题满分14)

设函数.

()x=6,的展开式中二项式系数最大的项;

()对任意的实数x,证明

()是否存在,使得an恒成立?若存在,试证明你的结论

并求出a的值;若不存在,请说明理由.

本题考察函数、不等式、导数、二项式定理、组合数计算公式等内容和数学思想方法。

考查综合推理论证与分析解决问题的能力及创新意识。

(Ⅰ)解:展开式中二项式系数最大的项是第4项,这项是

(Ⅱ)证法一:因

证法二:因

故只需对进行比较。

,有

,得

因为当时,单调递减;当时,

单调递增,所以在有极小值

故当时,

从而有,亦即

故有恒成立。

所以,原不等式成立。

(Ⅲ)对,且

又因,故

,从而有成立,

即存在,使得恒成立。

 

 

 

本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574