2004年
解答题
(15)(本小题满分14分)
在中,,,,求的值和的面积
(16)(本小题满分14分)
如图,在正三棱柱中,AB=2,,由顶点B沿棱柱侧
面经过棱到顶点的最短路线 与的交点记为M,求:
(I)三棱柱的侧面展开图的对角线长
(II)该最短路线的长及的值
(III)平面与平面ABC所成二面角(锐角)的大小
(17)(本小题满分14分)
如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),
A(),B()均在抛物线上。
(I)写出该抛物线的方程及其准线方程
(II)当PA与PB的斜率存在且倾斜角互补时,求的值及直线AB的斜率
(18)(本小题满分14分)
函数定义在[0,1]上,满足且,在每个区间
(1,2……)上,的图象都是平行于x轴的直线的一部分。
(I)求及,的值,并归纳出的表达式
(II)设直线,,x轴及的图象围成的矩形的面积
为(1,2……),求及的值
(19)(本小题满分12分)
某段城铁线路上依次有A、B、C三站,AB=15km,BC=3km,在列车运行
时刻表上,规定列车8时整从A站发车,8时07分到达B站并停车1分钟,8时
12分到达C站,在实际运行中,假设列车从A站正点发车,在B站停留1分钟,
并在行驶时以同一速度匀速行驶,列车从A站到达某站的时间与时刻表
上相应时间之 差的绝对值称为列车在该站的运行误差。
(I)分别写出列车在B、C两站的运行误差
(II)若要求列车在B,C两站的运行误差之和不超过2分钟,求的取值范围
(20)(本小题满分12分)
给定有限个正数满足条件T:每个数都不大于50且总和L=1275。现将
这些数按下列要求进行分组, 每组数之和不大于150且分组的步骤是:
首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和
的差与所有可能的其他选择 相比是最小的,称为第一组余差;
然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构
成第二组,这时的余差为; 如此继续构成第三组(余差为)、第四组
(余差为)、……,直至第N组(余差为)把这些数全部分 完为止。
(I)判断的大小关系,并指出除第N组外的每组至少含有几个数
(II)当构成第n(n<N)组后,指出余下的每个数与的大小关系,并证明
(III)对任何满足条件T的有限个正数,证明:
2005年
解答题
(15)已知tan=2,
求(1)tan()的值
(2)的值
(16)(本小题共14分)
如图, 在直三棱柱中, ,
点为的中点
(Ⅰ)求证;
(Ⅱ) 求证;
(Ⅲ)求异面直线与所成角的余弦值
(17)(本小题共13分)
数列的前n项和为S,且n=1,2,3….求
(I)的值及数列的通项公式;
(II)的值.
(18)(本小题共13分)
甲、乙俩人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.
(Ⅰ)记甲恰好击中目标2次的概率;
(Ⅱ)求乙至少击中目标2次的概率;
(Ⅲ)求乙恰好比甲多击中目标2次的概率;
(19)(本小题共14分)
已知函数.
(I)求的单调递减区间;
(Ⅱ)若在区间[一2,2]上的最大值为20,求它在该区间上的最小值.
(20)(本小题共14分)
如图,直线与直线之间的阴影区域(不含边界)记为,
其左半部分记为,右半部分记为
(Ⅰ)分别有不等式组表示和
(Ⅱ)若区域中的动点到的距离
之积等于,求点的轨迹的方程;
(Ⅲ)设不过原点的直线与(Ⅱ)中的曲线
相交于两点,且与分别交于两点.
求证△的重心与△的重心重合
2006
解答题
(15)(本小题共12分)
已知函数f(x)=.
(Ⅰ)求f(x)的定义域;
(Ⅱ)设α是第四象限的角,且tanα= -,求f(α)的值.
(16)(本小题共13分)
已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经
过点(1,0),(2,0),如图所示.求:
(Ⅰ)x0的值;
(Ⅱ)a,b,c的值.
(17)(本小题共14分)
如图,ABCD-A1B1C1D1是正四棱柱.
(Ⅰ)求证:BD⊥平面ACC1A1;
(Ⅱ)若二面角C1-BD-C的大小为60°,求异面直线BC1与AC所成角的大小.
(18)(本小题共13分)
某公司招聘员工,指定三门考试课程,有两种考试方案.
方案一:考试三门课程,至少有两门及格为考试通过:
方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是0.5,0.6,0.9,
且三门课程考试是否及格相互之间没有影响.求:
(Ⅰ)该应聘者用方案一考试通过的概率;
(Ⅱ)该应聘者用方案二考试通过的概率.
(19)(本小题共14分)
椭圆C:=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且
PF1⊥F1F2,|PF1|=,|PF2|=.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l过圆x2+y2+4x-2y=0的圆心M,交椭圆C于A,B两点,且A,B
关于点M对称,求直线l的方程.
(20)(本小题共14分)
设等差数列{an}的首项a1及公差d都为整数,前n项和为Sn.
(Ⅰ)若a11=0,S14=98,求数列{an}的通项公式;
(Ⅱ)若a1≥6,a11>0,S14≤77,求所有可能的数列{an}的通项公式.
2007年
解答题
15.(本小题共12分)
记关于的不等式的解集为,不等式的解集为.
(I)若,求;
(II)若,求正数的取值范围.
16.(本小题共13分)
数列中,(是常数,),且成公比
不为的等比数列.
(I)求的值;
(II)求的通项公式.
17.(本小题共14分)
如图,在中,,斜边.可以通过以
直线为轴旋转得到,且二面角的直二面角.是的中点.
(I)求证:平面平面;
(II)求异面直线与所成角的大小.
18.(本小题共12分)
某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆
公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:
(I)这6位乘客在其不相同的车站下车的概率;
(II)这6位乘客中恰有3人在终点站下车的概率;
19.(本小题共14分)
如图,矩形的两条对角线相交于点,边所在直线的方程
为点在边所在直线上.
(I)求边所在直线的方程;
(II)求矩形外接圆的方程;
(III)若动圆过点,且与
矩形的外接圆外切,求动圆的圆心的轨迹方程.
20.(本小题共14分)
已知函数与的图象相交于,,,分别
是的图象在两点的切线,分别是,与轴的交点.
(I)求的取值范围;
(II)设为点的横坐标,当时,写出以为自变量的函数式,
并求其定义域和值域;
(III)试比较与的大小,并说明理由(是坐标原点).
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。