2022年高考数学新高考Ⅰ-7<-->2022年高考数学新高考Ⅰ-9
(5分)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为36π,且3⩽l⩽3√3,则该正四棱锥体积的取值范围是( ) A.[18,814] B.[274,814] C.[274,643] D.[18,27] 分析:画出图形,由题意可知求出球的半径R=3,设正四棱锥的底面边长为a,高为h,由勾股定理可得l2=12a2+h2,又R2=(h−3)2+(√2a2)2,所以l2=6h,由l的取值范围求出h的取值范围,又因为a2=12h−2h2,所以该正四棱锥体积V(h)=−23h3+4h2,利用导数即可求出V(h)的取值范围. 解:
 如图所示,正四棱锥P−ABCD各顶点都在同一球面上,连接AC与BD交于点E,连接PE,则球心O在直线PE上,连接OA, 设正四棱锥的底面边长为a,高为h, 在RtΔPAE中,PA2=AE2+PE2,即l2=(√2a2)2+h2=12a2+h2, ∵球O的体积为36\pi,\therefore球O的半径R=3, 在\rm{Rt}\Delta OAE中,OA^{2}=OE^{2}+AE^{2},即{R}^{2}=(h-3)^{2}+(\dfrac{\sqrt{2}a}{2})^{2}, \therefore\dfrac{1}{2}{a}^{2}+{h}^{2}-6h=0,\therefore\dfrac{1}{2}{a}^{2}+{h}^{2}=6h, \therefore l^{2}=6h,又\because 3\leqslant l\leqslant 3\sqrt{3},\therefore\dfrac{3}{2}\leqslant h\leqslant \dfrac{9}{2}, \therefore该正四棱锥体积V(h)=\dfrac{1}{3}{a}^{2}h=\dfrac{1}{3}(12h-2{h}^{2})h=-\dfrac{2}{3}{h}^{3}+4{h}^{2}, \because V'(h)=-2h^{2}+8h=2h(4-h), \therefore当\dfrac{3}{2}\leqslant h < 4时,V'(h) > 0,V(h)单调递增;当4 < h\leqslant \dfrac{9}{2}时,V'(h) < 0,V(h)单调递减, \therefore V(h)_{max}=V(4)=\dfrac{64}{3}, 又\because V(\dfrac{3}{2})=\dfrac{27}{4},V(\dfrac{9}{2})=\dfrac{81}{4},且\dfrac{27}{4} < \dfrac{81}{4}, \therefore\dfrac{27}{4}\leqslant V(h)\leqslant \dfrac{64}{3}, 即该正四棱锥体积的取值范围是[\dfrac{27}{4},\dfrac{64}{3}], 故选:C.
点评:本题主要考查了正四棱锥的外接球问题,考查了利用导数研究函数的最值,属于中档题.
2022年高考数学新高考Ⅰ-7<-->2022年高考数学新高考Ⅰ-9
全网搜索"2022年高考数学新高考Ⅰ-8"相关
|