br>
2022年高考数学上海10<-->2022年高考数学上海12
(5分)若平面向量$\vert \overrightarrow{a}\vert =\vert \overrightarrow{b}\vert =\vert \overrightarrow{c}\vert =\lambda$,且满足$\overrightarrow{a}\cdot \overrightarrow{b}=0$,$\overrightarrow{a}\cdot \overrightarrow{c}=2$,$\overrightarrow{b}\cdot \overrightarrow{c}=1$,则$\lambda =$ $\sqrt[4]{5}$ . 分析:利用平面向量的数量积进行分析,即可得出结果. 解:由题意,有$\overrightarrow{a}\cdot \overrightarrow{b}=0$,则$\overrightarrow{a}\bot \overrightarrow{b}$,设$ < \overrightarrow{a},\overrightarrow{c} > =\theta$, $\left\{\begin{array}{l}{\overrightarrow{a}\cdot \overrightarrow{c}=2}\\ {\overrightarrow{b}\cdot \overrightarrow{c}=1}\end{array}\right.$$\Rightarrow$$\left\{ \begin{array}{*{35}{l}} \left| {\vec{a}} \right|\left| {\vec{c}} \right|cos\theta =2, \\ \left| {\vec{b}} \right|\left| {\vec{c}} \right|cos\left( \dfrac{\pi }{2}-\theta \right)=1, \\ \end{array} \right.$ 则$\dfrac{}{}$得,$\tan \theta =\dfrac{1}{2}$, 由同角三角函数的基本关系得:$\cos \theta =\dfrac{2\sqrt{5}}{5}$, 则$\overrightarrow{a}\cdot \overrightarrow{c}=\vert \overrightarrow{a}\vert \vert \overrightarrow{c}\vert \cos \theta =\lambda \cdot \lambda \cdot \dfrac{2\sqrt{5}}{5}=2$, $\lambda ^{2}=\sqrt{5}$, 则$\lambda =\sqrt[4]{5}$. 故答案为:$\sqrt[4]{5}$. 点评:本题考查平面向量的数量积,考查学生的运算能力,属于中档题.
2022年高考数学上海10<-->2022年高考数学上海12
全网搜索"2022年高考数学上海11"相关
|