br>
2021年高考数学新高考Ⅱ-11<-->2021年高考数学新高考Ⅱ-13
12.(5分)设正整数$n=a_{0}\cdot 2^{0}+a_{1}\cdot 2^{1}+\ldots +a_{k-1}\cdot 2^{k-1}+a_{k}\cdot 2^{k}$,其中$a_{i}\in \{0$,$1\}$,记$\omega (n)=a_{0}+a_{1}+\ldots +a_{k}$,则( ) A.$\omega (2n)=\omega (n)$ B.$\omega (2n+3)=\omega (n)+1$ C.$\omega (8n+5)=\omega (4n+3)$ D.$\omega (2^{n}-1)=n$ 分析:$2n=a_{0}\cdot 2^{1}+a_{1}\cdot 2^{2}+\ldots +a_{k-1}\cdot 2^{k}+a_{k}\cdot 2^{k+1}$可判断$A$;取$n=2$可判断$B$; 把$8n+5$和$4n+3$都化成$n=a_{0}\cdot 2^{0}+a_{1}\cdot 2^{1}+\ldots +a_{k-1}\cdot 2^{k-1}+a_{k}\cdot 2^{k}$,可判断$C$; $2^{n}-1=1\cdot 2^{0}+1\cdot 2^{1}+\cdot \cdot \cdot +1\cdot 2^{n-1}$可判断$D$. 解:$\because 2n=a_{0}\cdot 2^{1}+a_{1}\cdot 2^{2}+\ldots +a_{k-1}\cdot 2^{k}+a_{k}\cdot 2^{k+1}$,$\therefore \omega (2n)=\omega (n)=a_{0}+a_{1}+\ldots +k$,$\therefore A$对; 当$n=2$时,$2n+3=7=1\cdot 2^{0}+1\cdot 2^{1}+1\cdot 2^{2}$,$\therefore \omega$(7)$=3$.$\because 2=0\cdot 2^{0}+1\cdot 2^{1}$,$\therefore \omega$(2)$=0+1=1$,$\therefore \omega$(7)$\ne \omega$(2)$+1$,$\therefore B$错; $\because 8n+5=a_{0}\cdot 2^{3}+a_{1}\cdot 2^{4}+\cdot \cdot \cdot +a_{k}\cdot 2^{k+3}+5=1\cdot 2^{0}+1\cdot 2^{2}+a_{0}\cdot 2^{3}+a_{1}\cdot 2^{4}+\cdot \cdot \cdot +a_{k}\cdot 2^{k+3}$, $\therefore \omega (8n+5)=a_{0}\cdot +a_{1}\cdot +\cdot \cdot \cdot +a_{k}+2$.$\because 4n+3=a_{0}\cdot 2^{2}+a_{1}\cdot 2^{3}+\cdot \cdot \cdot +a_{k}\cdot 2^{k+2}+3=1\cdot 2^{0}+1\cdot 2^{1}+a_{0}\cdot 2^{2}+a_{1}\cdot 2^{3}+\cdot \cdot \cdot +a_{k}\cdot 2^{k+2}$, $\therefore \omega (4n+3)=a_{0}\cdot +a_{1}\cdot +\cdot \cdot \cdot +a_{k}+2=\omega (8n+5)$.$\therefore C$对; $\because 2^{n}-1=1\cdot 2^{0}+1\cdot 2^{1}+\cdot \cdot \cdot +1\cdot 2^{n-1}$,$\therefore \omega (2^{n}-1)=n$,$\therefore D$对. 故选:$ACD$. 点评:本题考查数列递推式,考查数学运算能力,属于难题.
2021年高考数学新高考Ⅱ-11<-->2021年高考数学新高考Ⅱ-13
全网搜索"2021年高考数学新高考Ⅱ-12"相关
|