91学 首页 > 数学 > 高考题 > 2021 > 2021年新高考2 > 正文 返回 打印

2021年高考数学新高考Ⅱ-12

  2022-04-29 23:01:02  

12.(5分)设正整数$n=a_{0}\cdot 2^{0}+a_{1}\cdot 2^{1}+\ldots +a_{k-1}\cdot 2^{k-1}+a_{k}\cdot 2^{k}$,其中$a_{i}\in \{0$,$1\}$,记$\omega (n)=a_{0}+a_{1}+\ldots +a_{k}$,则(  )
A.$\omega (2n)=\omega (n)$              
B.$\omega (2n+3)=\omega (n)+1$              
C.$\omega (8n+5)=\omega (4n+3)$              
D.$\omega (2^{n}-1)=n$
分析:$2n=a_{0}\cdot 2^{1}+a_{1}\cdot 2^{2}+\ldots +a_{k-1}\cdot 2^{k}+a_{k}\cdot 2^{k+1}$可判断$A$;取$n=2$可判断$B$;
把$8n+5$和$4n+3$都化成$n=a_{0}\cdot 2^{0}+a_{1}\cdot 2^{1}+\ldots +a_{k-1}\cdot 2^{k-1}+a_{k}\cdot 2^{k}$,可判断$C$;
$2^{n}-1=1\cdot 2^{0}+1\cdot 2^{1}+\cdot \cdot \cdot +1\cdot 2^{n-1}$可判断$D$.
解:$\because 2n=a_{0}\cdot 2^{1}+a_{1}\cdot 2^{2}+\ldots +a_{k-1}\cdot 2^{k}+a_{k}\cdot 2^{k+1}$,$\therefore \omega (2n)=\omega (n)=a_{0}+a_{1}+\ldots +k$,$\therefore A$对;
当$n=2$时,$2n+3=7=1\cdot 2^{0}+1\cdot 2^{1}+1\cdot 2^{2}$,$\therefore \omega$(7)$=3$.$\because 2=0\cdot 2^{0}+1\cdot 2^{1}$,$\therefore \omega$(2)$=0+1=1$,$\therefore \omega$(7)$\ne \omega$(2)$+1$,$\therefore B$错;
$\because 8n+5=a_{0}\cdot 2^{3}+a_{1}\cdot 2^{4}+\cdot \cdot \cdot +a_{k}\cdot 2^{k+3}+5=1\cdot 2^{0}+1\cdot 2^{2}+a_{0}\cdot 2^{3}+a_{1}\cdot 2^{4}+\cdot \cdot \cdot +a_{k}\cdot 2^{k+3}$,
$\therefore \omega (8n+5)=a_{0}\cdot +a_{1}\cdot +\cdot \cdot \cdot +a_{k}+2$.$\because 4n+3=a_{0}\cdot 2^{2}+a_{1}\cdot 2^{3}+\cdot \cdot \cdot +a_{k}\cdot 2^{k+2}+3=1\cdot 2^{0}+1\cdot 2^{1}+a_{0}\cdot 2^{2}+a_{1}\cdot 2^{3}+\cdot \cdot \cdot +a_{k}\cdot 2^{k+2}$,
$\therefore \omega (4n+3)=a_{0}\cdot +a_{1}\cdot +\cdot \cdot \cdot +a_{k}+2=\omega (8n+5)$.$\therefore C$对;
$\because 2^{n}-1=1\cdot 2^{0}+1\cdot 2^{1}+\cdot \cdot \cdot +1\cdot 2^{n-1}$,$\therefore \omega (2^{n}-1)=n$,$\therefore D$对.
故选:$ACD$.
点评:本题考查数列递推式,考查数学运算能力,属于难题.
 

http://x.91apu.com//shuxue/gkt/2021/2021xgk2/2022-04-29/33168.html