(1)如图,在$\triangle ABD$中,$AB=2$,$BD=5$,$\angle A=45^\circ$。
由正弦定理,$\dfrac{BD}{\sin 45^\circ}=\dfrac{AB}{\sin \angle ADB}$,
即$\dfrac{5}{\frac{\sqrt{2}}{2}}=\dfrac{2}{\sin \angle ADB}$,
所以$\sin \angle ADB=\dfrac{\sqrt{2}}{5}$。
因为$\angle ADC=90^\circ$,所以$\angle ADB <90^\circ$,
因为$\cos^2 \angle ADB + \sin^2 \angle ADB =1$,
所以$\cos \angle ADB=\dfrac{\sqrt{23}}{5}$。
(2)因为$CD=2\sqrt{2}$,$\angle CDB=90^\circ-\angle ADB$,
$\cos \angle CDB=\sin \angle ADB=\dfrac{\sqrt{2}}{5}$,
在$\triangle CBD$中,由余弦定理得,
$BC^2=CD^2+BD^2-2 \times CD \times BD \times \cos \angle CDB$
$=(2\sqrt{2})^2+5^2-2 \times 2\sqrt{2} \times 5 \times \dfrac{\sqrt{2}}{5}$
$=25$。
所以$BC=5$。