(5分)设函数$f(x)$满足$f(x)=f(\dfrac{1}{x+1})$,定义域为$D=[0$,$+\infty )$,值域为$A$,若集合$\{y\vert y=f(x)$,$x\in [0$,$a]\}$可取得$A$中所有值,则参数$a$的取值范围为 $[\dfrac{\sqrt{5}-1}{2}$,$+\infty )$ . 分析:由$x=\dfrac{1}{x+1}$可得$x=\dfrac{\sqrt{5}-1}{2}$,可判断当$x\geqslant \dfrac{\sqrt{5}-1}{2}$时,$\dfrac{1}{x+1}\leqslant \dfrac{\sqrt{5}-1}{2}$;当$0\leqslant x < \dfrac{\sqrt{5}-1}{2}$时,$\dfrac{1}{x+1} > \dfrac{\sqrt{5}-1}{2}$;从而可得$A=\{y\vert y=f(x)$,$x\in [0$,$a]\}$时,参数$a$的最小值为$\dfrac{\sqrt{5}-1}{2}$,从而求得. 解:令$x=\dfrac{1}{x+1}$得, $x=\dfrac{\sqrt{5}-1}{2}$或$x=\dfrac{-\sqrt{5}-1}{2}$(舍去); 当$x\geqslant \dfrac{\sqrt{5}-1}{2}$时, $\dfrac{1}{x+1}\leqslant \dfrac{1}{\dfrac{\sqrt{5}-1}{2}+1}=\dfrac{\sqrt{5}-1}{2}$, 故对任意$x\geqslant \dfrac{\sqrt{5}-1}{2}$, 都存在$x_{0}\in [0$,$\dfrac{\sqrt{5}-1}{2}]$,$\dfrac{1}{x+1}=x_{0}$, 故$f(x)=f(x_{0})$, 而当$0\leqslant x < \dfrac{\sqrt{5}-1}{2}$时, $\dfrac{1}{x+1} > \dfrac{1}{\dfrac{\sqrt{5}-1}{2}+1}=\dfrac{\sqrt{5}-1}{2}$, 故$A=\{y\vert y=f(x)$,$x\in [0$,$\dfrac{\sqrt{5}-1}{2}]\}$, 故当$A=\{y\vert y=f(x)$,$x\in [0$,$a]\}$时, $[0$,$\dfrac{\sqrt{5}-1}{2}]\subseteq [0$,$a]$, 故参数$a$的最小值为$\dfrac{\sqrt{5}-1}{2}$, 故参数$a$的取值范围为$[\dfrac{\sqrt{5}-1}{2}$,$+\infty )$, 故答案为:$[\dfrac{\sqrt{5}-1}{2}$,$+\infty )$. 点评:本题考查了抽象函数的性质的应用,同时考查了集合的应用,属于中档题.
|