91学 首页 > 数学 > 高考题 > 2022 > 2022年上海 > 正文 返回 打印

2022年高考数学上海12

  2022-12-16 20:34:22  

(5分)设函数$f(x)$满足$f(x)=f(\dfrac{1}{x+1})$,定义域为$D=[0$,$+\infty )$,值域为$A$,若集合$\{y\vert y=f(x)$,$x\in [0$,$a]\}$可取得$A$中所有值,则参数$a$的取值范围为  $[\dfrac{\sqrt{5}-1}{2}$,$+\infty )$ .
分析:由$x=\dfrac{1}{x+1}$可得$x=\dfrac{\sqrt{5}-1}{2}$,可判断当$x\geqslant \dfrac{\sqrt{5}-1}{2}$时,$\dfrac{1}{x+1}\leqslant \dfrac{\sqrt{5}-1}{2}$;当$0\leqslant x < \dfrac{\sqrt{5}-1}{2}$时,$\dfrac{1}{x+1} > \dfrac{\sqrt{5}-1}{2}$;从而可得$A=\{y\vert y=f(x)$,$x\in [0$,$a]\}$时,参数$a$的最小值为$\dfrac{\sqrt{5}-1}{2}$,从而求得.
解:令$x=\dfrac{1}{x+1}$得,
$x=\dfrac{\sqrt{5}-1}{2}$或$x=\dfrac{-\sqrt{5}-1}{2}$(舍去);
当$x\geqslant \dfrac{\sqrt{5}-1}{2}$时,
$\dfrac{1}{x+1}\leqslant \dfrac{1}{\dfrac{\sqrt{5}-1}{2}+1}=\dfrac{\sqrt{5}-1}{2}$,
故对任意$x\geqslant \dfrac{\sqrt{5}-1}{2}$,
都存在$x_{0}\in [0$,$\dfrac{\sqrt{5}-1}{2}]$,$\dfrac{1}{x+1}=x_{0}$,
故$f(x)=f(x_{0})$,
而当$0\leqslant x < \dfrac{\sqrt{5}-1}{2}$时,
$\dfrac{1}{x+1} > \dfrac{1}{\dfrac{\sqrt{5}-1}{2}+1}=\dfrac{\sqrt{5}-1}{2}$,
故$A=\{y\vert y=f(x)$,$x\in [0$,$\dfrac{\sqrt{5}-1}{2}]\}$,
故当$A=\{y\vert y=f(x)$,$x\in [0$,$a]\}$时,
$[0$,$\dfrac{\sqrt{5}-1}{2}]\subseteq [0$,$a]$,
故参数$a$的最小值为$\dfrac{\sqrt{5}-1}{2}$,
故参数$a$的取值范围为$[\dfrac{\sqrt{5}-1}{2}$,$+\infty )$,
故答案为:$[\dfrac{\sqrt{5}-1}{2}$,$+\infty )$.
点评:本题考查了抽象函数的性质的应用,同时考查了集合的应用,属于中档题.

http://x.91apu.com//shuxue/gkt/2022/2022sh/2022-12-16/33546.html