19.(12分)设$\{a_{n}\}$是首项为1的等比数列,数列$\{b_{n}\}$满足$b_{n}=\dfrac{n{a}_{n}}{3}$,已知$a_{1}$,$3a_{2}$,$9a_{3}$成等差数列. (1)求$\{a_{n}\}$和$\{b_{n}\}$的通项公式; (2)记$S_{n}$和$T_{n}$分别为$\{a_{n}\}$和$\{b_{n}\}$的前$n$项和.证明:$T_{n}<\dfrac{{S}_{n}}{2}$. 分析:(1)根据$a_{1}$,$3a_{2}$,$9a_{3}$成等差数列,$\{a_{n}\}$是首项为1的等比数列,求出公比$q$,进一步求出$\{a_{n}\}$和$\{b_{n}\}$的通项公式; (2)分别利用等比数列的前$n$项和公式和错位相减法,求出$S_{n}$和$T_{n}$,再利用作差法证明$T_{n}<\dfrac{{S}_{n}}{2}$. 解:(1)$\because a_{1}$,$3a_{2}$,$9a_{3}$成等差数列,$\therefore 6a_{2}=a_{1}+9a_{3}$, $\because \{a_{n}\}$是首项为1的等比数列,设其公比为$q$, 则$6q=1+9q^{2}$,$\therefore q=\dfrac{1}{3}$, $\therefore a_{n}=a_{1}q^{n-1}=(\dfrac{1}{3})^{n-1}$, $\therefore b_{n}=\dfrac{n{a}_{n}}{3}=n\cdot (\dfrac{1}{3})^{n}$. (2)证明:由(1)知$a_{n}=(\dfrac{1}{3})^{n-1}$,$b_{n}=n\cdot (\dfrac{1}{3})^{n}$, $\therefore$${S}_{n}=\dfrac{1\times [1-(\dfrac{1}{3})^{n}]}{1-\dfrac{1}{3}}=\dfrac{3}{2}-\dfrac{1}{2}\times (\dfrac{1}{3})^{n-1}$, ${T}_{n}=1\times (\dfrac{1}{3})^{1}+2\times (\dfrac{1}{3})^{2}+\ldots +n\cdot (\dfrac{1}{3})^{n}$,① $\therefore$$\dfrac{1}{3}{T}_{n}=1\times (\dfrac{1}{3})^{2}+2\times (\dfrac{1}{3})^{3}+\ldots +n\cdot (\dfrac{1}{3})^{n+1}$,② ①$-$②得,$\dfrac{2}{3}{T}_{n}=\dfrac{1}{2}[1-(\dfrac{1}{3})^{n}]-n(\dfrac{1}{3})^{n+1}$, $\therefore$${T}_{n}=\dfrac{3}{4}-\dfrac{1}{4}\times (\dfrac{1}{3})^{n-1}-\dfrac{n}{2}(\dfrac{1}{3})^{n}$, $\therefore$${T}_{n}-\dfrac{{S}_{n}}{2}=\dfrac{3}{4}-\dfrac{1}{4}\times (\dfrac{1}{3})^{n-1}-\dfrac{n}{2}\cdot (\dfrac{1}{3})^{n}-[\dfrac{3}{4}-\dfrac{1}{4}\times (\dfrac{1}{3})^{n-1}]<0$, $\therefore T_{n}<\dfrac{{S}_{n}}{2}$. 点评:本题考查了等差数列与等比数列的性质,等比数列的前$n$项和公式和利用错位相减法求数列的前$n$项和,考查了方程思想和转化思想,属中档题.
|