2006
解答题
(17)(本大题满分12分)
数列的前项和记为
(Ⅰ)求的通项公式;
(Ⅱ)等差数列的各项为正,其前项和为,且,
又成等比数列,求
(18)(本大题满分12分)
已知是三角形三内角,向量m=(-1,),n=(cosA,sinA),且mn=1.
(Ⅰ)求角;
(Ⅱ)若,求tanC.
(19)(本大题满分12分)
某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与
“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、
丙三人在理论考核中合格的概率分别为;在实验考核中合格的概
率分别为,所有考核是否合格相互之间没有影响
(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;
(Ⅱ)求这三人该课程考核都合格的概率。(结果保留三位小数)
(20)(本大题满分12分)
如图,在长方体中,分别是的中点,
分别是的中点,
(Ⅰ)求证:面;
(Ⅱ)求二面角的大小。
(21)(本大题满分12分)
已知函数,其中是的导函数
(Ⅰ)对满足的一切的值,都有,求实数的取值范围;
(Ⅱ)设,当实数在什么范围内变化时,函数的图象与
直线只有一个公共点
(22)(本大题满分14分)
已知两定点,满足条件的点的轨迹是
曲线,直线与曲线交于两点
(Ⅰ)求的取值范围;
(Ⅱ)如果,且曲线上存在点,使,
求的值和的面积S.
2007
解答题
(17)(本小题满分12分)
厂家在产品出厂前,需对产品做检验,厂家对一般产品致冷商家的,商家符合
规定拾取一定数量的产品做检验,以决定是否验收这些产品.
(Ⅰ)若厂家库房中的每件产品合格的概率为0.3,从中任意取出4种进行检验,
求至少要1件是合格产品的概率.
(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,
来进行检验,只有2件产品合格时才接收这些产品,否则拒收,分别求出该商家计算
出不合格产品为1件和2件的概率,并求该商家拒收这些产品的概率。
(18)(本小题满分12分)
已知cosα=,cos(α-β)=,且0<β<α<,
(Ⅰ)求tan2α的值;
(Ⅱ)求β.
(19) (本小题满分12分)
如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直线AM与直线PC所成的角为60°,
又AC=1,BC=2PM=2,∠ACB=90°
(Ⅰ)求证:AC⊥BM;
(Ⅱ)求二面角M-AB-C的大小;
(Ⅲ)求多面体PMABC的体积.
(20)(本小题满分12分)
设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线
与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在〔-1,3〕上的最大值和最小值.
(21)(本小题满分12分)
求F1、F2分别是横线的左、右焦点.
(Ⅰ)若r是第一象限内该数轴上的一点,,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于同的两点A、B,且∠ADB为锐角
(其中O为作标原点),求直线的斜率的取值范围.
(22)(本小题满分14分)
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴
的交点为(xn+1,u)(u,N +),其中为正实数.
(Ⅰ)用xx表示xn+1;
(Ⅱ)若a1=4,记an=lg,证明数列{a1}成等比数列,
并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。