17.(本小题满分12分)
已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值.
(1)求a、b的值及函数f(x)的单调区间;
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.
18.(本小题满分12分)
某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每
次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红
球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.令ξ表示甲、
乙两人摸球后获得的奖金总额.求
(1)ξ的分布列; (2)ξ的数学期望.
19.(本小题满分12分)
如图,已知△ABC是边长为1的正三角形,M、N分别是边AB、AC上的
点,线段MN经过△ABC的中心G.设∠MGA=α(≤α≤).
(1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为α的函数;
(2)求y=的最大值与最小值.
20.(本小题满分12分)
如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,
且AD=,BD=CD=1.另一个侧面ABC是正三角形.
(1)求证:AD⊥BC;
(2)求二面角B-AC-D的大小;
(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;
若不存在,说明理由.
21.(本小题满分12分)
如图,椭圆Q:=1(a>b>0)的右焦点为F(c,0),过点F的一动直线m绕
点F转动,并且交椭圆于A、B两点,P为线段AB的中点.
(1)求点P的轨迹H的方程;
(2)若在Q的方程中,令a2=1+cosθ+sinθ,b2=sinθ(0<θ≤).确定θ的值,使
原点距椭圆Q的右准线l最远.此时,设l与x轴交点为D,当直线m绕点F转动到
什么位置时,三角形ABD的面积最大?
22.(本小题满分14分)
已知数列{an}满足:a1=,且an=(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对一切正整数n,不等式a1·a2·…·an<2·n!恒成立.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。