解答题
16.(本小题满分12分)
设函数·(b+c),其中向量a=(sinx,—cosx),b=(sinx,—3cosx),
c=(—cosx,sinx),x。
(Ⅰ)求函数f(x)的最大值和最小正周期;
(Ⅱ)将函数y=f(x)的图像按向量d平移,使平移后得到的图象关于坐标
原点成中心对称,求长度最小的d。
17.(本小题满分13分)
已知二次函数y=f(x)的图象经过坐标原点,其导函数为.数列{}的
前n项和为Sn,点均在函数y=f(x)的图象上。
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设,Tn是数列{bn}的前n项和,求使得Tn<对所有都成
立的最小正整数m。
18.(本小题满分12分)
如图,在棱长为1的正方体ABCD—A1B1C1D1中,P是侧棱CC1上的一点,CP=m。
(Ⅰ)试确定m,使得直线AP与平面BDD1B1所成角的正切值为;
(Ⅱ)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影
垂直于AP,并证明你的结论。
19.(本小题满分10分)
在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布N(70,100)。
已知成绩在90分以上(含90分)的学生有12名。
(Ⅰ)试问此次参赛的学生总数约为多少人?
(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?
可供查阅的(部分)标准正态分布表(x0)=P(x<x0)
20.(本小题满分14分)
设A、B分别为椭圆(a,b>0)的左、右顶点,椭圆长半轴的长等于焦距,
且x=4为它的右准线。
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP、BP分别与椭圆相交于
异于A、B的点M、N,证明点B在以MN为直径的圆内。
(此题不要求在答题卡上画图)
21.(本小题满分14分)
设x=3是函数f(x)=(x2+ax+b)e3-x(x∈R)的一个极值点。
(Ⅰ)求a与b的关系式(用a表示b),并求f(x)的单调区间;
(Ⅱ)设>0,使得<1成立,
求a的取值范围。
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。