三、解答题
(15)(本小题共12分)
已知函数f(x)=
(Ⅰ)求f(x)的定义域;
(Ⅱ)设α是第四象限的角,且tanα=-求f(α)的值.
(16)(本小题共13分)
已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)
的图象经过点(1,0),(2,0),如图所示,求:
(Ⅰ)x0的值;
(Ⅱ)a,b,c的值.
(17)(本小题共14分)
如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,
且PA=AB,点E是PD的中点.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)求证:PB∥平面AEC;
(Ⅲ)求二面角E-AC-B的大小.
(18)(本小题共13分)
某公司招聘员工,指定三门考试课程,有两种考试方案.
方案一:考试三门课程,至少有两门及格为考试通过;
方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是a,b,c,且三门课程
考试是否及格相互之间没有影响.
(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;
(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)
(19)(本小题共14分)
已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2.记动点P的
轨迹为W.
(Ⅰ)求W的方程;
(Ⅱ)若A,B是W上的不同两点,O是坐标原点,求的最小值.
(20)(本小题共14分)
在数列{an}中,若a1,a2是正整数,且an=|an-1-an-2|,n=3,4,5,…,
则称{an}为“绝对差数列”.
(Ⅰ)举出一个前五项不为零的“绝对差数列”(只要求写出前十项);
(Ⅱ)若“绝对差数列”{an}中,a20=3,a21=0,数列{bn}满足bn=an+ an+1
+ an+2,n=1,2,3,…,分别判断当n→∞时,an与bn的极限是否存在,如果存
在,求出其极限值;
(Ⅲ)证明:任何“绝对差数列”中总含有无穷多个为零的项.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。