解答题
17.(本小题满分12分)
已知的值.
18.(本小题满分12分)
如图,在棱长为1的正方体ABCD—A1B1C1D1中,AC与BD交于点E,
CB与CB1交于点F.
(I)求证:A1C⊥平BDC1;
(II)求二面角B—EF—C的大小(结果用反三角函数值表示).
19.(本小题满分12分)
如图,在Rt△ABC中,已知BC=a.若长为2a的线段PQ以点A为中点,
问的夹角θ取何值时的值最大?并求出这个最大值.
20.(本小题满分12分)
直线的右支交于不同的两点A、B.
(Ⅰ)求实数k的取值范围;
(Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?
若存在,求出k的值;若不存在,说明理由.
21.(本小题满分12分)
为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施
可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的
概率(记为P)和所需费用如下表:
预防措施 |
甲 |
乙 |
丙 |
丁 |
P |
0.9 |
0.8 |
0.7 |
0.6 |
费用(万元) |
90 |
60 |
30 |
10 |
预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超
过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.
22.(本小题满分14分)
已知的图象相切.
(Ⅰ)求b与c的关系式(用c表示b);
(Ⅱ)设函数内有极值点,求c的取值范围.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。