br>
2023年高考数学新高考Ⅱ-21<-->返回列表
(12分)(1)证明:当$0 < x < 1$时,$x-x^{2} < \sin x < x$; (2)已知函数$f(x)=\cos ax-\ln (1-x^{2})$,若$x=0$为$f(x)$的极大值点,求$a$的取值范围. 分析:(1)分别构造函数$g(x)=x-x^{2}-\sin x$,$h(x)=x-\sin x$,利用导数研究函数的单调性与最值,即可证明; (2)分类讨论二阶导函数的符号,从而可得一阶导函数的符号,从而得原函数的单调性,从而可得极值点,即可得解. (1)证明:设$g(x)=x-x^{2}-\sin x$,$x\in (0,1)$, 则$g\prime (x)=1-2x-\cos x$,$\therefore g\prime \prime (x)=-2+\sin x < 0$, $\therefore g\prime (x)$在$(0,1)$上单调递减, $\therefore g\prime (x) < g\prime (0)=0$, $\therefore g(x)$在$(0,1)$上单调递减, $\therefore g(x) < g(0)=0$, 即$x-x^{2}-\sin x < 0$,$x\in (0,1)$, $\therefore x-x^{2} < \sin x$,$x\in (0,1)$, 设$h(x)=x-\sin x$,$x\in (0,1)$, 则$h\prime (x)=1-\cos x > 0$, $\therefore h(x)$在$(0,1)$上单调递增, $\therefore h(x) > h(0)=0$,$x\in (0,1)$, 即$x-\sin x > 0$,$x\in (0,1)$, $\therefore \sin x < x$,$x\in (0,1)$, 综合可得:当$0 < x < 1$时,$x-x^{2} < \sin x < x$; (2)解:$\because f\prime (x)=-a\sin ax+\dfrac{2x}{1-{x}^{2}}$,$\therefore f\prime \prime (x)=-{a}^{2}\cos ax+\dfrac{2+2{x}^{2}}{(1-{x}^{2})^{2}}$, 且$f\prime (0)=0$,$f\prime \prime (0)=-a^{2}+2$, ①若$f\prime \prime (0)=2-a^{2} > 0$,即$-\sqrt{2} < a < \sqrt{2}$时, 易知存在$t_{1} > 0$,使得$x\in (0,t_{1})$时,$f\prime \prime (x) > 0$, $\therefore f\prime (x)$在$(0,t_{1})$上单调递增,$\therefore f\prime (x) > f\prime (0)=0$, $\therefore f(x)$在$(0,t_{1})$上单调递增,这显然与$x=0$为函数的极大值点相矛盾,故舍去; ②若$f\prime \prime (0)=2-a^{2} < 0$,即$a < -\sqrt{2}$或$a > \sqrt{2}$时, 存在$t_{2} > 0$,使得$x\in (-t_{2}$,$t_{2})$时,$f\prime \prime (x) < 0$, $\therefore f\prime (x)$在$(-t_{2}$,$t_{2})$上单调递减,又$f\prime (0)=0$, $\therefore$当$-t_{2} < x < 0$时,$f\prime (x) > 0$,$f(x)$单调递增; 当$0 < x < t_{2}$时,$f\prime (x) < 0$,$f(x)$单调递减,满足$x=0$为$f(x)$的极大值点,符合题意; ③若$f\prime \prime (0)=2-a^{2}=0$,即$a=\pm \sqrt{2}$时,$\because f(x)$为偶函数, $\therefore$只考虑$a=\sqrt{2}$的情况, 此时$f\prime (x)=-\sqrt{2}\sin (\sqrt{2}x)+\dfrac{2x}{1-{x}^{2}}$,$x\in (0,1)$时, $f\prime (x) > -2x+\dfrac{2x}{1-{x}^{2}}=2x(\dfrac{1}{1-{x}^{2}}-1) > 0$, $\therefore f(x)$在$(0,1)$上单调递增,与显然与$x=0$为函数的极大值点相矛盾,故舍去. 综合可得:$a$的取值范围为$(-\infty$,$-\sqrt{2})\bigcup (\sqrt{2}$,$+\infty )$. 点评:本题考查导数的综合应用,构造函数证明不等式,利用导数研究函数的单调性与极值,分类讨论思想,化归转化思想,属难题.
2023年高考数学新高考Ⅱ-21<-->返回列表
全网搜索"2023年高考数学新高考Ⅱ-22"相关
|