面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高考题 > 2023 > 2023年天津

2023年高考数学天津20

(16分)已知函数$f(x)=(\dfrac{1}{x}+\dfrac{1}{2})\ln (x+1)$.
(Ⅰ)求曲线$y=f(x)$在$x=2$处的切线斜率;
(Ⅱ)当$x > 0$时,求证:$f(x) > 1$;
(Ⅲ)证明:$\dfrac{5}{6} < \ln (n!)-(n+\dfrac{1}{2})\ln n+n\leqslant 1$.
答案:(Ⅰ)$\dfrac{1}{3}-\dfrac{\ln 3}{4}$;(Ⅱ)证明过程见解答;(Ⅲ)证明过程见解答.
分析:(Ⅰ)对函数$f(x)$求导,求出$f\prime$(2)的值即可得解;
(Ⅱ)令$g(x)=f(x)-1$,先利用导数求出$g(x)$的单调性,由此容易得证;
(Ⅲ)设数列$\{a_{n}\}$ 的前$n$项和${S}_{n}=\ln (n!)-(n+\dfrac{1}{2})\ln n+n$,可得当$n\geqslant 2$时,$a_{n}=S_{n}-S_{n-1} < 0$,由此可知$S_{n}\leqslant S_{1}=1$,证得不等式右边;再证明对任意的$n\geqslant 2$,$\sum\limits_{k=2}^{n}(-{a}_{k})=\sum\limits_{k=2}^{n}(f(\dfrac{1}{k-1})-1)\leqslant \dfrac{1}{6}$,令$h(x)=\ln (x+1)-\dfrac{x(x+2)}{2(x+1)}$,利用导数可知$\ln (x+1) < \dfrac{x(x+2)}{2(x+1)}$,由此可得$\sum\limits_{k=4}^{n}(-{a}_{k}) < \dfrac{1}{10}$,再求得$-a_{2}$,$-a_{3}$,由此可得证不等式左边,进而得证.
解:(Ⅰ)对函数$f(x)$求导,可得$f\prime (x)=\dfrac{x+2}{2x(x+1)}-\dfrac{1}{x^2}\ln (x+1)$,
则曲线$y=f(x)$在$x=2$处的切线斜率为$f\prime$(2)$=\dfrac{1}{3}-\dfrac{\ln 3}{4}$;
(Ⅱ)证明:当$x > 0$时,$f(x) > 1$,即$\dfrac{x+2}{2x}\ln (x+1) > 1$,即$g(x)=\ln (x+1)-\dfrac{2x}{x+2} > 0$,
而$g'(x)=\dfrac{x^2}{(x+1)(x+2)^2} > 0,g(x)$ 在$(0,+\infty )$上单调递增,
因此$g(x) > g(0)=0$,原不等式得证;
(Ⅲ)证明:设数列$\{a_{n}\}$的前$n$项和${S}_{n}=\ln (n!)-(n+\dfrac{1}{2})\ln n+n$,
则$a_{1}=S_{1}=1$;
当$n\geqslant 2$时,${a}_{n}={S}_{n}-{S}_{n-1}=1+(n-\dfrac{1}{2})\ln \dfrac{n-1}{n}=1-(\dfrac{1}{\dfrac{1}{n-1}}+\dfrac{1}{2})\ln (1+\dfrac{1}{n-1})=1-f(\dfrac{1}{n-1})$,
由(2),$a_{n} < 0(n\geqslant 2)$,
故$S_{n}\leqslant S_{1}=1$,不等式右边得证;
要证$\dfrac{5}{6}\leqslant S_n$,只需证:对任意的$n\geqslant 2$,$\sum\limits_{k=2}^{n}(-{a}_{k})=\sum\limits_{k=2}^{n}(f(\dfrac{1}{k-1})-1)\leqslant \dfrac{1}{6}$,
令$h(x)=\ln (x+1)-\dfrac{x(x+2)}{2(x+1)}$,则$h'(x)=-\dfrac{x^2}{2(x+1)^2}$,
当$x > 0$时,$h\prime (x) < 0$,函数$h(x)$在$(0,+\infty )$上单调递减,
则$h(x) < 0$,即$\ln (x+1) < \dfrac{x(x+2)}{2(x+1)}$,
则$f(x)-1 < \dfrac{x+2}{2x}\cdot \dfrac{x(x+2)}{2(x+1)}-1=\dfrac{{x}^{2}}{4(x+1)} < \dfrac{{x}^{2}}{4}$,
因此当$k\geqslant 2$时,$f(\dfrac{1}{k-1})-1 < \dfrac{1}{4(k-1)^{2}} < \dfrac{1}{4(k-1)^{2}-1}=\dfrac{1}{2}(\dfrac{1}{2k-3}-\dfrac{1}{2k-1})$,
当$n\geqslant 4$时,累加得
$\sum\limits_{k=4}^{n}(-{a}_{k})=\sum\limits_{k=4}^{n}(f(\dfrac{1}{k-1})-1) < \dfrac{1}{2}[(\dfrac{1}{5}-\dfrac{1}{7})+(\dfrac{1}{7}-\dfrac{1}{9})+\ldots +(\dfrac{1}{2n-3}-\dfrac{1}{2n-1})]=\dfrac{1}{2}(\dfrac{1}{5}-\dfrac{1}{2n-1}) < \dfrac{1}{10}$,
又$-{a}_{2}=f(1)-1=\dfrac{3}{2}\ln 2-1 < \dfrac{3}{2}\times 0.694-1=0.041$,$-{a}_{3}=\dfrac{5}{2}\ln \dfrac{3}{2}-1 < \dfrac{5}{2}(1.1-0.693)-1=0.0175$,
故$\sum\limits_{k=2}^{n}(-{a}_{k})=-{a}_{2}-{a}_{3}+\sum\limits_{k=4}^{n}(-{a}_{k})=0.041+0.0175+\dfrac{1}{10}=0.1585 < \dfrac{1}{6}$,即得证.
点评:本题考查导数的综合运用,考查逻辑推理能力和运算求解能力,属于难题.
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
    无相关信息
发表笔记 共有条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝