(5分)在正方形$ABCD$中,边长为1.$E$为线段$CD$的三等分点,$\overrightarrow{EC}=\dfrac{1}{2}\overrightarrow{DE}$,$\overrightarrow{BE}=\lambda \overrightarrow{BA}+\mu \overrightarrow{BC}$,则$\lambda +\mu =$____;若$F$为线段$BE$上的动点,$G$为$AF$中点,则$\overrightarrow{AF}\cdot \overrightarrow{DG}$的最小值为 ____.
答案:$\dfrac{4}{3}$;$-\dfrac{5}{18}$. 分析:由题意可知$\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AD}+\overrightarrow{DE}$,再结合$\overrightarrow{EC}=\dfrac{1}{2}\overrightarrow{DE}$可得$\overrightarrow{BE}=\dfrac{1}{3}\overrightarrow{BA}+\overrightarrow{BC}$,进而求出$\lambda$,$\mu$的值,得到$\lambda +\mu$的值;设$\overrightarrow{BF}=m\overrightarrow{BE}(0\leqslant m\leqslant 1)$,可得$\overrightarrow{AF}=(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}$,$\overrightarrow{DG}=(\dfrac{1}{6}m-\dfrac{1}{2})\overrightarrow{BA}+(\dfrac{1}{2}m-1)\overrightarrow{BC}$,易知${\overrightarrow{BA}}^{2}=1$,$\overrightarrow{BA}\cdot \overrightarrow{BC}=0$,即可求出$\overrightarrow{AF}\cdot \overrightarrow{DG}$,再结合二次函数的性质求解即可. 解:由题意可知,$\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AD}+\overrightarrow{DE}=\overrightarrow{BA}+\overrightarrow{BC}+\dfrac{2}{3}\overrightarrow{DC}=\overrightarrow{BA}+\overrightarrow{BC}-\dfrac{2}{3}\overrightarrow{CD}=\overrightarrow{BA}+\overrightarrow{BC}-\dfrac{2}{3}\overrightarrow{BA}=\dfrac{1}{3}\overrightarrow{BA}+\overrightarrow{BC}$, $\therefore$$\lambda =\dfrac{1}{3}$,$\mu =1$, $\therefore \lambda +\mu =\dfrac{4}{3}$, 如图:
设$\overrightarrow{BF}=m\overrightarrow{BE}(0\leqslant m\leqslant 1)$, 则$\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{BF}=-\overrightarrow{BA}+m\overrightarrow{BE}=-\overrightarrow{BA}+m(\dfrac{1}{3}\overrightarrow{BA}+\overrightarrow{BC})=(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}$, $\because G$为$AF$中点, $\therefore$$\overrightarrow{DG}=\overrightarrow{DA}+\overrightarrow{AG}=-\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{AF}=-\overrightarrow{BC}+\dfrac{1}{2}[(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}]=(\dfrac{1}{6}m-\dfrac{1}{2})\overrightarrow{BA}+(\dfrac{1}{2}m-1)\overrightarrow{BC}$, $\because$正方形$ABCD$的边长为1, $\therefore$${\overrightarrow{BA}}^{2}=1$,$\overrightarrow{BA}\cdot \overrightarrow{BC}=0$, $\therefore$$\overrightarrow{AF}\cdot \overrightarrow{DG}=[(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}]\cdot [(\dfrac{1}{6}m-\dfrac{1}{2})\overrightarrow{BA}+(\dfrac{1}{2}m-1)\overrightarrow{BC}]=(\dfrac{1}{3}m-1)(\dfrac{1}{6}m-\dfrac{1}{2})+m(\dfrac{1}{2}m-1)=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}$, 对于函数$y=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}$,对称轴为$m=\dfrac{6}{5}$, $\therefore$函数$y=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}$在$[0$,$1]$上单调递减, $\therefore$当$m=1$时,函数$y=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}$取得最小值$-\dfrac{5}{18}$, 即$\overrightarrow{AF}\cdot \overrightarrow{DG}$的最小为$-\dfrac{5}{18}$. 故答案为:$\dfrac{4}{3}$;$-\dfrac{5}{18}$. 点评:本题主要考查了平面向量的线性运算和数量积运算,考查了二次函数的性质,属于中档题.
|