2023年高考数学天津15 |
|
2023-07-08 14:20:40 |
|
(5分)若函数$f(x)=ax^{2}-2x-\vert x^{2}-ax+1\vert$有且仅有两个零点,则$a$的取值范围为 ____. 答案:$(-\infty$,$0)\bigcup (0$,$1)\bigcup (1$,$+\infty )$. 分析:首先要分情况去绝对值,化简函数,再根据对应方程根的情况判定零点个数是否满足题意. 解:①当$a=0$时,$f(x)=-2x-\vert x^{2}+1\vert =-2x-x^{2}-1$,不满足题意; ②当方程$x^{2}-ax+1=0$满足$a\ne 0$且△$\leqslant 0$时, 有$a^{2}-4\leqslant 0$即$a\in [-2$,$0)\bigcup (0$,$2]$, 此时,$f(x)=(a-1)x^{2}+(a-2)x-1$ ,当$a=1$时,不满足, 当$a\ne 1$时,△$=(a-2)^{2}+4(a-1)=a^{2} > 0$,满足; ③△$ > 0$时,$a\in (-\infty$,$-2)\bigcup (2$,$+\infty )$, 记$x^{2}-ax+1$的两根为$m$,$n$,不妨设$m < n$, 则$f(x)=\left\{\begin{array}{l}{[(a-1)x-1](x+1),x\in (-\infty ,m]\bigcup{[}n,+\infty )}\\ {[(a+1)x-1](x-1),x\in (m,n)}\end{array}\right.$, 当$a > 2$时,$x_{1}=\dfrac{1}{a-1}$,$x_{2}=-1$且$x\in (-\infty$,$m]\bigcup{[}n$,$+\infty )$, 但此时${x}_{1}^{2}-ax_{1}+1=\dfrac{-a+2}{(a-1)^{2}} < 0$,舍去$x_{1}$, $x_{3}=\dfrac{1}{a+1}$,$x_{4}=1$,且$x\in (m,n)$, 但此时${x}_{3}^{2}-ax_{3}+1=\dfrac{a+2}{(a-1)^{2}} > 0$,舍去$x_{3}$, 故仅有1与$-1$两个解,即$f(x)$有且仅有两个零点, 当$a < -2$时,有${x}_{2}^{2}-ax_{2}+1=a+2 < 0$,舍去$x_{2}$,${x}_{4}^{2}-a{x}_{4}+1=2-a > 0$,舍去$x_{4}$, 故仅有$\dfrac{1}{a-1}$和$\dfrac{1}{a+1}$两个解,即$f(x)$有且仅有两个零点, 综上,$a\in (-\infty$,$0)\bigcup (0$,$1)\bigcup (1$,$+\infty )$. 故答案为:$(-\infty$,$0)\bigcup (0$,$1)\bigcup (1$,$+\infty )$. 点评:本题是含参数的函数零点问题,主要是分类讨论思想的考查,属偏难题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023tj/2023-07-08/33790.html |