2023年高考数学乙卷-文18 |
|
2023-07-08 14:05:05 |
|
(12分)记Sn为等差数列{an}的前n项和,已知a2=11,S10=40. (1)求{an}的通项公式; (2)求数列{|an|}的前n项和Tn. 答案:(1)an=−2n+15(n∈N⋅). (2)当1⩽n⩽7时,Tn=−n2+14n, 当n⩾8时,Tn=n2−14n+98. 分析:(1)建立方程组求出首项和公差即可. (2)求出|an|的表达式,讨论n的取值,然后进行求解即可. 解:(1)在等差数列中,∵,S_{10}=40. \therefore\left\{\begin{array}{l}{{a}_{1}+d=11}\\ {10{a}_{1}+\dfrac{10\times 9}{2}d=40}\end{array}\right.,即\left\{\begin{array}{l}{{a}_{1}+d=11}\\ {{a}_{1}+\dfrac{9}{2}d=4}\end{array}\right., 得a_{1}=13,d=-2, 则a_{n}=13-2(n-1)=-2n+15(n\in N^{\cdot }). (2)\vert a_{n}\vert =\vert -2n+15\vert =\left\{\begin{array}{l}{-2n+15,}&{1\leqslant n\leqslant 7}\\ {2n-15,}&{n\geqslant 8}\end{array}\right., 即1\leqslant n\leqslant 7时,\vert a_{n}\vert =a_{n}, 当n\geqslant 8时,\vert a_{n}\vert =-a_{n}, 当1\leqslant n\leqslant 7时,数列\{\vert a_{n}\vert \}的前n项和T_{n}=a_{1}+\dotsb +a_{n}=13n+\dfrac{n(n-1)}{2}\times (-2)=-n^{2}+14n, 当n\geqslant 8时,数列\{\vert a_{n}\vert \}的前n项和T_{n}=a_{1}+\dotsb +a_{7}-\dotsb -a_{n}=-S_{n}+2(a_{1}+\dotsb +a_{7})=-[13n+\dfrac{n(n-1)}{2}\times (-2)]+2\times \dfrac{13+1}{2}\times 7=n^{2}-14n+98. 点评:本题主要考查等差数列的通项公式和数列求和,建立方程组求出首项和公差是解决本题的关键,是中档题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023qgyw/2023-07-08/33749.html |