Loading [MathJax]/jax/element/mml/optable/MathOperators.js
91学 首页 > 数学 > 高考题 > 2023 > 2023年全国乙文 > 正文 返回 打印

2023年高考数学乙卷-文18

  2023-07-08 14:05:05  

(12分)记Sn为等差数列{an}的前n项和,已知a2=11S10=40
(1)求{an}的通项公式;
(2)求数列{|an|}的前n项和Tn
答案:(1)an=2n+15(nN)
(2)当1n7时,Tn=n2+14n
n8时,Tn=n214n+98
分析:(1)建立方程组求出首项和公差即可.
(2)求出|an|的表达式,讨论n的取值,然后进行求解即可.
解:(1)在等差数列中,S_{10}=40
\therefore\left\{\begin{array}{l}{{a}_{1}+d=11}\\ {10{a}_{1}+\dfrac{10\times 9}{2}d=40}\end{array}\right.,即\left\{\begin{array}{l}{{a}_{1}+d=11}\\ {{a}_{1}+\dfrac{9}{2}d=4}\end{array}\right.
a_{1}=13d=-2
a_{n}=13-2(n-1)=-2n+15(n\in N^{\cdot })
(2)\vert a_{n}\vert =\vert -2n+15\vert =\left\{\begin{array}{l}{-2n+15,}&{1\leqslant n\leqslant 7}\\ {2n-15,}&{n\geqslant 8}\end{array}\right.
1\leqslant n\leqslant 7时,\vert a_{n}\vert =a_{n}
n\geqslant 8时,\vert a_{n}\vert =-a_{n}
1\leqslant n\leqslant 7时,数列\{\vert a_{n}\vert \}的前n项和T_{n}=a_{1}+\dotsb +a_{n}=13n+\dfrac{n(n-1)}{2}\times (-2)=-n^{2}+14n
n\geqslant 8时,数列\{\vert a_{n}\vert \}的前n项和T_{n}=a_{1}+\dotsb +a_{7}-\dotsb -a_{n}=-S_{n}+2(a_{1}+\dotsb +a_{7})=-[13n+\dfrac{n(n-1)}{2}\times (-2)]+2\times \dfrac{13+1}{2}\times 7=n^{2}-14n+98
点评:本题主要考查等差数列的通项公式和数列求和,建立方程组求出首项和公差是解决本题的关键,是中档题.

http://x.91apu.com//shuxue/gkt/2023/2023qgyw/2023-07-08/33749.html