2023年高考数学乙卷-文18 |
|
2023-07-08 14:05:05 |
|
(12分)记$S_{n}$为等差数列$\{a_{n}\}$的前$n$项和,已知$a_{2}=11$,$S_{10}=40$. (1)求$\{a_{n}\}$的通项公式; (2)求数列$\{\vert a_{n}\vert \}$的前$n$项和$T_{n}$. 答案:(1)$a_{n}=-2n+15(n\in N^{\cdot })$. (2)当$1\leqslant n\leqslant 7$时,$T_{n}=-n^{2}+14n$, 当$n\geqslant 8$时,$T_{n}=n^{2}-14n+98$. 分析:(1)建立方程组求出首项和公差即可. (2)求出$\vert a_{n}\vert$的表达式,讨论$n$的取值,然后进行求解即可. 解:(1)在等差数列中,$\because a_{2}=11$,$S_{10}=40$. $\therefore$$\left\{\begin{array}{l}{{a}_{1}+d=11}\\ {10{a}_{1}+\dfrac{10\times 9}{2}d=40}\end{array}\right.$,即$\left\{\begin{array}{l}{{a}_{1}+d=11}\\ {{a}_{1}+\dfrac{9}{2}d=4}\end{array}\right.$, 得$a_{1}=13$,$d=-2$, 则$a_{n}=13-2(n-1)=-2n+15(n\in N^{\cdot })$. (2)$\vert a_{n}\vert =\vert -2n+15\vert =\left\{\begin{array}{l}{-2n+15,}&{1\leqslant n\leqslant 7}\\ {2n-15,}&{n\geqslant 8}\end{array}\right.$, 即$1\leqslant n\leqslant 7$时,$\vert a_{n}\vert =a_{n}$, 当$n\geqslant 8$时,$\vert a_{n}\vert =-a_{n}$, 当$1\leqslant n\leqslant 7$时,数列$\{\vert a_{n}\vert \}$的前$n$项和$T_{n}=a_{1}+\dotsb +a_{n}=13n+\dfrac{n(n-1)}{2}\times (-2)=-n^{2}+14n$, 当$n\geqslant 8$时,数列$\{\vert a_{n}\vert \}$的前$n$项和$T_{n}=a_{1}+\dotsb +a_{7}-\dotsb -a_{n}=-S_{n}+2(a_{1}+\dotsb +a_{7})=-[13n+\dfrac{n(n-1)}{2}\times (-2)]+2\times \dfrac{13+1}{2}\times 7=n^{2}-14n+98$. 点评:本题主要考查等差数列的通项公式和数列求和,建立方程组求出首项和公差是解决本题的关键,是中档题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023qgyw/2023-07-08/33749.html |