2023年高考数学甲卷-理16 |
|
2023-07-08 11:27:58 |
|
(5分)在$\Delta ABC$中,$\angle BAC=60^\circ$,$AB=2$,$BC=\sqrt{6}$,$D$为$BC$上一点,$AD$为$\angle BAC$的平分线,则$AD=$____. 答案:2. 分析:在$\Delta ABC$中,根据正弦定理可求出$\angle ACB=45^\circ$,从而可得$\angle ABC=\angle ADB=75^\circ$,即得$AD=AB=2$. 解:
如图,$\because$在$\Delta ABC$中,$AB=2$,$\angle BAC=60^\circ ,BC=\sqrt{6}$, $\therefore$由正弦定理可得$\dfrac{BC}{\sin \angle BAC}=\dfrac{AB}{\sin \angle ACB}$, $\therefore \sin \angle ACB=\dfrac{AB\times \sin \angle BAC}{BC}=\dfrac{2\times \dfrac{\sqrt{3}}{2}}{\sqrt{6}}=\dfrac{\sqrt{2}}{2}$,又$\angle BAC=60^\circ$, $\therefore \angle ACB=45^\circ$,$\therefore \angle ABC=180^\circ -45^\circ -60^\circ =75^\circ$, 又$AD$为$\angle BAC$的平分线,且$\angle BAC=60^\circ$, $\therefore \angle BAD=30^\circ$,又$\angle ABC=75^\circ$,$\therefore \angle ADB=75^\circ$, $\therefore AD=AB=2$. 故答案为:2.
点评:本题考查解三角形问题,正弦定理的应用,属中档题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023qgjl/2023-07-08/33678.html |