2023年高考数学新高考Ⅱ-21 |
|
2023-07-08 11:20:59 |
|
(12分)已知双曲线$C$中心为坐标原点,左焦点为$(-2\sqrt{5}$,$0)$,离心率为$\sqrt{5}$. (1)求$C$的方程; (2)记$C$的左、右顶点分别为$A_{1}$,$A_{2}$,过点$(-4,0)$的直线与$C$的左支交于$M$,$N$两点,$M$在第二象限,直线$MA_{1}$与$NA_{2}$交于$P$,证明$P$在定直线上. 分析:(1)根据已知条件,结合双曲线的性质,即可求解; (2)设出直线$MN$的方程,并与双曲线$C$联立,再结合韦达定理,推得${x}_{1}+{x}_{2}=\dfrac{32m}{4{m}^{2}-1}$,${x}_{1}{x}_{2}=\dfrac{48}{4{m}^{2}-1}$,设出$MA_{1}$,$NA_{2}$直线方程,再联立方程,即可求解. 解:(1)双曲线$C$中心为原点,左焦点为$(-2\sqrt{5}$,$0)$,离心率为$\sqrt{5}$, 则$\left\{\begin{array}{l}{{c}^{2}={a}^{2}+{b}^{2}}\\ {c=2\sqrt{5}}\\ {e=\dfrac{c}{a}=\sqrt{5}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=2}\\ {b=4}\end{array}\right.$, 故双曲线$C$的方程为$\dfrac{{x}^{2}}{4}-\dfrac{{y}^{2}}{16}=1$; (2)证明:过点$(-4,0)$的直线与$C$的左支交于$M$,$N$两点, 则可设直线$MN$的方程为$x=my-4$,$M(x_{1}$,$y_{1})$,$N(x_{2}$,$y_{2})$, 记$C$的左,右顶点分别为$A_{1}$,$A_{2}$, 则$A_{1}(-2,0)$,$A_{2}(2,0)$, 联立$\left\{\begin{array}{l}{x=my-4}\\ {4{x}^{2}-{y}^{2}=16}\end{array}\right.$,化简整理可得,$(4m^{2}-1)y^{2}-32my+48=0$, 故△$=(-32m)^{2}-4\times 48\times (4m^{2}-1)=256m^{2}+192 > 0$且$4m^{2}-1\ne 0$, ${y}_{1}+{y}_{2}=\dfrac{32m}{4{m}^{2}-1}$,${y}_{1}{y}_{2}=\dfrac{48}{4{m}^{2}-1}$, 直线$MA_{1}$的方程为$y=\dfrac{{y}_{1}}{{x}_{1}+2}(x+2)$,直线$NA_{2}$方程$y=\dfrac{{y}_{2}}{{x}_{2}-2}(x-2)$, 故$\dfrac{x+2}{x-2}=\dfrac{{y}_{2}({x}_{1}+2)}{{y}_{1}({x}_{2}-2)}=\dfrac{{y}_{2}(m{y}_{1}-2)}{{y}_{1}(m{y}_{2}-6)}$ $=\dfrac{m{y}_{1}{y}_{2}-2({y}_{1}+{y}_{2})+2{y}_{1}}{m{y}_{1}{y}_{2}-6{y}_{1}}$ $=\dfrac{m\cdot \dfrac{48}{4{m}^{2}-1}-2\cdot \dfrac{32m}{4{m}^{2}-1}+2{y}_{1}}{m\cdot \dfrac{48}{4{m}^{2}-1}-6{y}_{1}}$ $=\dfrac{\dfrac{-16m}{4{m}^{2}-1}+2{y}_{1}}{\dfrac{48m}{4{m}^{2}-1}-6{y}_{1}}=-\dfrac{1}{3}$, 故$\dfrac{x+2}{x-2}=-\dfrac{1}{3}$,解得$x=-1$, 所以$x_{P}=-1$, 故点$P$在定直线$x=-1$上运动. 点评:本题主要考查直线与圆锥曲线的综合,考查转化能力,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023xgk2/2023-07-08/33661.html |