2023年高考数学新高考Ⅱ-20 |
|
2023-07-08 11:20:35 |
|
(12分)如图,三棱锥$A-BCD$中,$DA=DB=DC$,$BD\bot CD$,$\angle ADB=\angle ADC=60^\circ$,$E$为$BC$中点. (1)证明$BC\bot DA$; (2)点$F$满足$\overrightarrow{EF}=\overrightarrow{DA}$,求二面角$D-AB-F$的正弦值.
分析:(1)根据已知条件,推得$DE\bot BC$,$AE\bot BC$,再结合线面垂直的判定定理,即可求证. (2)根据已知条件,推得$AE\bot$平面$BCD$,依次求出两个平面的法向量,再结合向量的夹角公式,即可求解. 证明:(1)连接$AE$,$DE$, $\because DB=DC$,$E$为$BC$中点. $\therefore DE\bot BC$, 又$\because DA=DB=DC$,$\angle ADB=\angle ADC=60^\circ$, $\therefore \Delta ACD$与$\Delta ABD$ 均为等边三角形, $\therefore AC=AB$, $\therefore AE\bot BC$,$AE\bigcap DE=E$, $\therefore BC\bot$平面$ADE$, $\because AD\subset$平面$ADE$, $\therefore BC\bot DA$. (2)解:设$DA=DB=DC=2$, $\therefore$$BC=2\sqrt{2}$, $\because$$DE=AE=\sqrt{2}$,$AD=2$, $\therefore AE^{2}+DE^{2}=4=AD^{2}$, $\therefore AE\bot DE$, 又$\because AE\bot BC$,$DE\bigcap BC=E$, $\therefore AE\bot$平面$BCD$, 以$E$为原点,建立如图所示空间直角坐标系,
$D(\sqrt{2},0,0)$,$A(0,0,\sqrt{2})$,$B(0,\sqrt{2},0)$,$E(0$,0,$0)$, $\because$$\overrightarrow{EF}=\overrightarrow{DA}$, $\therefore$$F(-\sqrt{2},0,\sqrt{2})$, $\therefore$$\overrightarrow{DA}=(-\sqrt{2},0,\sqrt{2})$,$\overrightarrow{AB}=(0,\sqrt{2},-\sqrt{2})$,$\overrightarrow{AF}=(-\sqrt{2},0,0)$, 设平面$DAB$与平面$ABF$的一个法向量分别为$\overrightarrow{{n}_{1}}=({x}_{1},{y}_{1},{z}_{1})$,$\overrightarrow{n_2}=(x_2,y_2,z_2)$, 则$\left\{\begin{array}{l}{-\sqrt{2}{x}_{1}+\sqrt{2}{z}_{1}=0}\\ {\sqrt{2}{y}_{1}-\sqrt{2}{z}_{1}=0}\end{array}\right.$,令$x_{1}=1$,解得$y_{1}=z_{1}=1$, $\left\{\begin{array}{l}{\sqrt{2}{y}_{2}-\sqrt{2}{z}_{2}=0}\\ {-\sqrt{2}{x}_{2}=0}\end{array}\right.$,令$y_{2}=1$,解得$x_{2}=0$,$z_{2}=1$, 故$\overrightarrow{{n}_{1}}=(1$,1,$1)$,$\overrightarrow{{n}_{2}}=(0$,1,$1)$, 设二面角$D-AB-F$的平面角为$\theta$, 则$\vert \cos \theta \vert =\dfrac{\vert \overrightarrow{{n}_{1}}\cdot \overrightarrow{{n}_{2}}\vert }{\vert \overrightarrow{{n}_{1}}\vert \;\vert \overrightarrow{{n}_{2}}\vert }=\dfrac{2}{\sqrt{3}\times \sqrt{2}}=\dfrac{\sqrt{6}}{3}$, 故$\sin \theta =\dfrac{\sqrt{3}}{3}$, 所以二面角$D-AB-F$的正弦值为$\dfrac{\sqrt{3}}{3}$. 点评:本题主要考查二面角的平面角及其求法,考查转化能力,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023xgk2/2023-07-08/33660.html |