(10分)记$\Delta ABC$的内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$,已知$\Delta ABC$面积为$\sqrt{3}$,$D$为$BC$的中点,且$AD=1$. (1)若$\angle ADC=\dfrac{\pi }{3}$,求$\tan B$; (2)若$b^{2}+c^{2}=8$,求$b$,$c$. 分析:(1)根据已知条件,推得$S_{\Delta ACD}=\dfrac{\sqrt{3}}{2}$,过$A$作$AE\bot BC$,垂足为$E$,依次求出$AE$,$BE$,即可求解; (2)根据已知条件,求得$\overrightarrow{AD}=\dfrac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,两边同时平方,再结合三角形的面积公式,即可求解. 解:(1)$)D$为$BC$中点,$S_{\Delta ABC}=\sqrt{3}$, 则$S_{\Delta ACD}=\dfrac{\sqrt{3}}{2}$, 过$A$作$AE\bot BC$,垂足为$E$,如图所示:
$\Delta ADE$中,$DE=\dfrac{1}{2}$,$AE=\dfrac{\sqrt{3}}{2}$,$S_{\Delta ACD}=\dfrac{1}{2}\cdot \dfrac{\sqrt{3}}{2}CD=\dfrac{\sqrt{3}}{2}$,解得$CD=2$, $\therefore BD=2$,$BE=\dfrac{5}{2}$, 故$\tan B=\dfrac{AE}{BE}=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{5}{2}}=\dfrac{\sqrt{3}}{5}$; (2)$\overrightarrow{AD}=\dfrac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$, $\overrightarrow{AD}^2=\dfrac{1}{4}(c^2+b^2+2bc\cos A)$, $AD=1$,$b^{2}+c^{2}=8$, 则$1=\dfrac{1}{4}(8+2bc\cos A)$, $\therefore bc\cos A=-2$①, ${{S}_{\Delta ABC}}=\dfrac{1}{2}bc\sin A=\sqrt{3}$,即$bc\sin A=2\sqrt{3}$②, 由①②解得$\tan A=-\sqrt{3}$, $\therefore$$A=\dfrac{2\pi }{3}$, $\therefore bc=4$,又$b^{2}+c^{2}=8$, $\therefore b=c=2$. 点评:本题主要考查三角形中的几何计算,考查转化能力,属于中档题.
|