91学 首页 > 数学 > 高考题 > 2023 > 2023年新高考2 > 正文 返回 打印

2023年高考数学新高考Ⅱ-13

  2023-07-08 11:13:17  

(5分)已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\vert \overrightarrow{a}-\overrightarrow{b}\vert =\sqrt{3}$,$\vert \overrightarrow{a}+\overrightarrow{b}\vert =\vert 2\overrightarrow{a}-\overrightarrow{b}\vert$,则$\vert \overrightarrow{b}\vert =$____.
分析:根据向量数量积的性质及方程思想,即可求解.
解:$\because \vert \overrightarrow{a}-\overrightarrow{b}\vert =\sqrt{3}$,$\vert \overrightarrow{a}+\overrightarrow{b}\vert =\vert 2\overrightarrow{a}-\overrightarrow{b}\vert$,
$\therefore$${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}-2\overrightarrow{a}\cdot \overrightarrow{b}=3$,${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}\cdot \overrightarrow{b}=4{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}-4\overrightarrow{a}\cdot \overrightarrow{b}$,
$\therefore$${\overrightarrow{a}}^{2}=2\overrightarrow{a}\cdot \overrightarrow{b}$,$\therefore$${\overrightarrow{b}}^{2}=3$,
$\therefore$$\vert \overrightarrow{b}\vert =\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评:本题考查向量数量积的性质及方程思想,属基础题.

http://x.91apu.com//shuxue/gkt/2023/2023xgk2/2023-07-08/33653.html