(5分)已知$\alpha$为锐角,$\cos \alpha =\dfrac{1+\sqrt{5}}{4}$,则$\sin \dfrac{\alpha }{2}=($ $)$ A.$\dfrac{3-\sqrt{5}}{8}$ B.$\dfrac{-1+\sqrt{5}}{8}$ C.$\dfrac{3-\sqrt{5}}{4}$ D.$\dfrac{-1+\sqrt{5}}{4}$ 答案:$D$ 分析:根据已知条件,结合二倍角公式,以及角$\alpha$的取值范围,即可求解. 解:$\cos \alpha =\dfrac{1+\sqrt{5}}{4}$, 则$\cos \alpha =1-2si{n}^{2}\dfrac{\alpha }{2}$, 故$2si{n}^{2}\dfrac{\alpha }{2}=1-\cos \alpha =\dfrac{3-\sqrt{5}}{4}$,即$si{n}^{2}\dfrac{\alpha }{2}=\dfrac{3-\sqrt{5}}{8}=\dfrac{(\sqrt{5})^{2}+{1}^{2}-2\sqrt{5}}{16}=\dfrac{(\sqrt{5}-1)^{2}}{16}$, $\because \alpha$为锐角, $\therefore$$\sin \dfrac{\alpha }{2} > 0$, $\therefore \sin \dfrac{\alpha }{2}=\dfrac{-1+\sqrt{5}}{4}$. 故选:$D$. 点评:本题主要考查半角的三角函数,属于基础题.
|