2023年高考数学新高考Ⅱ-5 |
|
2023-07-08 11:07:57 |
|
(5分)已知椭圆$C:\dfrac{{x}^{2}}{3}+{y}^{2}=1$的左焦点和右焦点分别为$F_{1}$和$F_{2}$,直线$y=x+m$与$C$交于点$A$,$B$两点,若△$F_{1}AB$面积是△$F_{2}AB$面积的两倍,则$m=($ $)$ A.$\dfrac{2}{3}$ B.$\dfrac{\sqrt{2}}{3}$ C.$-\dfrac{\sqrt{2}}{3}$ D.$-\dfrac{2}{3}$ 答案:$C$ 分析:记直线$y=x+m$与$x$轴交于$M(-m,0)$,由题意可得$\vert -\sqrt{2}-x_{M}\vert =2\vert \sqrt{2}-x_{M}\vert$,求解即可. 解:记直线$y=x+m$与$x$轴交于$M(-m,0)$, 椭圆$C:\dfrac{{x}^{2}}{3}+{y}^{2}=1$的左,右焦点分别为$F_{1}(-\sqrt{2}$,$0)$,$F_{2}(\sqrt{2}$,$0)$, 由△$F_{1}AB$面积是△$F_{2}AB$的2倍,可得$\vert F_{1}M\vert =2\vert F_{2}M\vert$, $\therefore \vert -\sqrt{2}-x_{M}\vert =2\vert \sqrt{2}-x_{M}\vert$,解得$x_{M}=\dfrac{\sqrt{2}}{3}$或$x_{M}=3\sqrt{2}$, $\therefore -m=\dfrac{\sqrt{2}}{3}$或$-m=3\sqrt{2}$,$\therefore m=-\dfrac{\sqrt{2}}{3}$或$m=-3\sqrt{2}$, 联立$\left\{\begin{array}{l}{\dfrac{{x}^{2}}{3}+{y}^{2}=1}\\ {y=x+m}\end{array}\right.$可得,$4x^{2}+6mx+3m^{2}-3=0$, $\because$直线$y=x+m$与$C$相交,所以△$ > 0$,解得$m^{2} < 4$, $\therefore m=-3\sqrt{2}$不符合题意, 故$m=-\dfrac{\sqrt{2}}{3}$. 故选:$C$. 点评:本题考查直线与椭圆的位置关系,考查运算求解能力,属中档题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023xgk2/2023-07-08/33645.html |