2023年高考数学新高考Ⅰ-19 |
|
2023-07-08 11:03:58 |
|
(12分)已知函数$f(x)=a(e^{x}+a)-x$. (1)讨论$f(x)$的单调性; (2)证明:当$a > 0$时,$f(x) > 2\ln a+\dfrac{3}{2}$. 分析:(1)先求出导函数$f'(x)$,再对$a$分$a\leqslant 0$和$a > 0$两种情况讨论,判断$f'(x)$的符号,进而得到$f(x)$的单调性; (2)由(1)可知,当$a > 0$时,$f(x)_{min}=f(\ln \dfrac{1}{a})=1+a^{2}+\ln a$,要证$f(x) > 2\ln a+\dfrac{3}{2}$,只需证$1+a^{2}+\ln a > 2\ln a+\dfrac{3}{2}$,只需证${a}^{2}-\ln a-\dfrac{1}{2} > 0$,设$g$(a)$={a}^{2}-\ln a-\dfrac{1}{2}$,$a > 0$,求导可得$g(x)_{min}=g(\dfrac{\sqrt{2}}{2}) > 0$,从而证得$f(x) > 2\ln a+\dfrac{3}{2}$. 解:(1)$f(x)=a(e^{x}+a)-x$, 则$f'(x)=ae^{x}-1$, ①当$a\leqslant 0$时,$f'(x) < 0$恒成立,$f(x)$在$R$上单调递减, ②当$a > 0$时,令$f'(x)=0$得,$x=\ln \dfrac{1}{a}$, 当$x\in (-\infty ,\ln \dfrac{1}{a})$时,$f'(x) < 0$,$f(x)$单调递减;当$x\in (\ln \dfrac{1}{a}$,$+\infty )$时,$f'(x) > 0$,$f(x)$单调递增, 综上所述,当$a\leqslant 0$时,$f(x)$在$R$上单调递减;当$a > 0$时,$f(x)$在$(-\infty ,\ln \dfrac{1}{a})$上单调递减,在$(\ln \dfrac{1}{a}$,$+\infty )$上单调递增. 证明:(2)由(1)可知,当$a > 0$时,$f(x)_{min}=f(\ln \dfrac{1}{a})=a(\dfrac{1}{a}+a)-\ln \dfrac{1}{a}=1+a^{2}+\ln a$, 要证$f(x) > 2\ln a+\dfrac{3}{2}$,只需证$1+a^{2}+\ln a > 2\ln a+\dfrac{3}{2}$, 只需证${a}^{2}-\ln a-\dfrac{1}{2} > 0$, 设$g$(a)$={a}^{2}-\ln a-\dfrac{1}{2}$,$a > 0$, 则$g'$(a)$=2a-\dfrac{1}{a}=\dfrac{2{a}^{2}-1}{a}$, 令$g'$(a)$=0$得,$a=\dfrac{\sqrt{2}}{2}$, 当$a\in (0,\dfrac{\sqrt{2}}{2})$时,$g'$(a)$ < 0$,$g$(a)单调递减,当$a\in (\dfrac{\sqrt{2}}{2}$,$+\infty )$时,$g'$(a)$ > 0$,$g$(a)单调递增, 所以$g$(a)$\geqslant g(\dfrac{\sqrt{2}}{2})=\dfrac{1}{2}-\ln \dfrac{\sqrt{2}}{2}-\dfrac{1}{2}=-\ln \dfrac{\sqrt{2}}{2} > 0$, 即$g$(a)$ > 0$, 所以${a}^{2}-\ln a-\dfrac{1}{2} > 0$得证, 即$f(x) > 2\ln a+\dfrac{3}{2}$得证. 点评:本题主要考查了利用导数研究函数的单调性和最值,考查了函数恒成立问题,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023xgk1/2023-07-08/33637.html |