(5分)在正四棱台$ABCD-A_{1}B_{1}C_{1}D_{1}$中,$AB=2$,$A_{1}B_{1}=1$,$AA_{1}=\sqrt{2}$,则该棱台的体积为 $\dfrac{7\sqrt{6}}{6}$ . 分析:先根据题意求出四棱台的高,再代入台体的体积公式即可求解. 解:
如图,设正四棱台$ABCD-A_{1}B_{1}C_{1}D_{1}$的上下底面中心分别为$M$,$N$, 过$A_{1}$作$A_{1}H\bot AC$,垂足点为$H$,由题意易知$A_{1}M=HN=\dfrac{\sqrt{2}}{2}$,又$AN=\sqrt{2}$, $\therefore AH=AN-HN=\dfrac{\sqrt{2}}{2}$,又$AA_{1}=\sqrt{2}$,$\therefore A_{1}H=MN=\dfrac{\sqrt{6}}{2}$, $\therefore$该四棱台的体积为$\dfrac{1}{3}\times (1+4+\sqrt{1\times 4})\times \dfrac{\sqrt{6}}{2}=\dfrac{7\sqrt{6}}{6}$. 故答案为:$\dfrac{7\sqrt{6}}{6}$. 点评:本题考查台体的体积公式的应用,属基础题.
|