91学 首页 > 数学 > 高考题 > 2023 > 2023年新高考1 > 正文 返回 打印

2023年高考数学新高考Ⅰ-14

  2023-07-08 11:02:05  

(5分)在正四棱台$ABCD-A_{1}B_{1}C_{1}D_{1}$中,$AB=2$,$A_{1}B_{1}=1$,$AA_{1}=\sqrt{2}$,则该棱台的体积为  $\dfrac{7\sqrt{6}}{6}$ .
分析:先根据题意求出四棱台的高,再代入台体的体积公式即可求解.
解:

如图,设正四棱台$ABCD-A_{1}B_{1}C_{1}D_{1}$的上下底面中心分别为$M$,$N$,
过$A_{1}$作$A_{1}H\bot AC$,垂足点为$H$,由题意易知$A_{1}M=HN=\dfrac{\sqrt{2}}{2}$,又$AN=\sqrt{2}$,
$\therefore AH=AN-HN=\dfrac{\sqrt{2}}{2}$,又$AA_{1}=\sqrt{2}$,$\therefore A_{1}H=MN=\dfrac{\sqrt{6}}{2}$,
$\therefore$该四棱台的体积为$\dfrac{1}{3}\times (1+4+\sqrt{1\times 4})\times \dfrac{\sqrt{6}}{2}=\dfrac{7\sqrt{6}}{6}$.
故答案为:$\dfrac{7\sqrt{6}}{6}$.
点评:本题考查台体的体积公式的应用,属基础题.

http://x.91apu.com//shuxue/gkt/2023/2023xgk1/2023-07-08/33632.html