(5分)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有( ) A.直径为0.99m的球体 B.所有棱长均为1.4m的四面体 C.底面直径为0.01m,高为1.8m的圆柱体 D.底面直径为1.2m,高为0.01m的圆柱体 答案:ABD 分析:对于A,由正方体的内切球直径大于0.99可判断;对于B,由正方体内部最大的正四面体的棱长大于1.4可判断;对于C,由正方体的体对角线小于1.8可判断;对于D,取E,F,G,H,I,J都为棱中点,则六边形EFGHIJ为正六边形,由正六边形的内切圆直径大于1.2可判断. 解:对于A,棱长为1的正方体内切球的直径为1>0.99,选项A正确; 对于B,如图,
 正方体内部最大的正四面体D−A1BC1的棱长为√12+12=√2>1.4,选项B正确; 对于C,棱长为1的正方体的体对角线为√3<1.8,选项C错误; 对于D,如图,六边形EFGHIJ为正六边形,E,F,G,H,I,J为棱的中点,
 高为0.01米可忽略不计,看作直径为1.2米的平面圆, 六边形EFGHIJ棱长为√22米,∠GFH=∠GHF=30∘, 所以FH=√3FG=√3GH=√62米,故六边形EFGHIJ内切圆直径为√62米, 而(√62)2=32>(1.2)2=1.44,选项D正确. 故选:ABD. 点评:本题考查简单几何体的体积,考查空间想象能力与运算求解能力,属于中档题.
|