(5分)设椭圆$C_{1}:\dfrac{x^2}{a^2}+y^{2}=1(a > 1)$,$C_{2}:\dfrac{x^2}{4}+y^{2}=1$的离心率分别为$e_{1}$,$e_{2}$.若$e_{2}=\sqrt{3}e_{1}$,则$a=($ $)$ A.$\dfrac{2\sqrt{3}}{3}$ B.$\sqrt{2}$ C.$\sqrt{3}$ D.$\sqrt{6}$ 答案:$A$ 分析:利用椭圆$C_{2}:\dfrac{x^2}{4}+y^{2}=1$的方程可求其离心率$e_{2}$,进而可求$e_{1}$,可求$a$. 解:由椭圆$C_{2}:\dfrac{x^2}{4}+y^{2}=1$可得$a_{2}=2$,$b_{2}=1$,$\therefore c_{2}=\sqrt{4-1}=\sqrt{3}$, $\therefore$椭圆$C_{2}$的离心率为$e_{2}=\dfrac{\sqrt{3}}{2}$, $\because e_{2}=\sqrt{3}e_{1}$,$\therefore e_{1}=\dfrac{1}{2}$,$\therefore$$\dfrac{{c}_{1}}{{a}_{1}}=\dfrac{1}{2}$, $\therefore$${a}_{1}^{2}=4{c}_{1}^{2}=4({a}_{1}^{2}-{b}_{1}^{2})=4({a}_{1}^{2}-1)$, $\therefore a=\dfrac{2\sqrt{3}}{3}$或$a=-\dfrac{2\sqrt{3}}{3}$(舍去). 故选:$A$. 点评:本题考查椭圆的几何性质,考查运算求解能力,属基础题.
|