2023年高考数学新高考Ⅰ-3 |
|
2023-07-08 10:52:43 |
|
(5分)已知向量$\overrightarrow{a}=(1,1)$,$\overrightarrow{b}=(1,-1)$.若$(\overrightarrow{a}+\lambda \overrightarrow{b})\bot (\overrightarrow{a}+\mu \overrightarrow{b})$,则$($ $)$ A.$\lambda +\mu =1$ B.$\lambda +\mu =-1$ C.$\lambda \mu =1$ D.$\lambda \mu =-1$ 答案:$D$ 分析:由已知求得$\overrightarrow{a}+\lambda \overrightarrow{b}$与$\overrightarrow{a}+\mu \overrightarrow{b}$的坐标,再由两向量垂直与数量积的关系列式求解. 解:$\because$$\overrightarrow{a}=(1,1)$,$\overrightarrow{b}=(1,-1)$, $\therefore$$\overrightarrow{a}+\lambda \overrightarrow{b}=(\lambda +1,1-\lambda )$,$\overrightarrow{a}+\mu \overrightarrow{b}=(\mu +1,1-\mu )$, 由$(\overrightarrow{a}+\lambda \overrightarrow{b})\bot (\overrightarrow{a}+\mu \overrightarrow{b})$,得$(\lambda +1)(\mu +1)+(1-\lambda )(1-\mu )=0$, 整理得:$2\lambda \mu +2=0$,即$\lambda \mu =-1$. 故选:$D$. 点评:本题考查平面向量加法与数乘的坐标运算,考查两向量垂直与数量积的关系,是基础题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023xgk1/2023-07-08/33621.html |