2022年高考数学新高考Ⅱ-22 |
|
2022-12-16 17:33:23 |
|
(12分)已知函数$f(x)=xe^{ax}-e^{x}$. (1)当$a=1$时,讨论$f(x)$的单调性; (2)当$x > 0$时,$f(x) < -1$,求$a$的取值范围; (3)设$n\in N^{*}$,证明:$\dfrac{1}{\sqrt{{1^2}+1}}+\dfrac{1}{\sqrt{{2^2}+2}}+\ldots +\dfrac{1}{\sqrt{{n^2}+n}} > \ln (n+1)$. 分析:(1)先求出导函数$f'(x)$,再根据导函数$f'(x)$的正负即可得到函数$f(x)$的单调性. (2)构造函数$g(x)=f(x)+1=xe^{ax}-e^{x}+1(x > 0)$,则$g(x) < g(0)=0$在$x > 0$上恒成立,又$g\prime (x)=e^{ax}+xae^{ax}-e^{x}$,令$h(x)=g\prime (x)$,则$h\prime (x)=a(2e^{ax}+axe^{ax})-e^{x}$,根据$h\prime (0)$的正负分情况讨论,得到$g(x)$的单调性以及最值,判断是否满足题意,即可求出$a$的取值范围. (3)求导易得$t-\dfrac{1}{t} > 2\ln t(t > 1)$,令$t=\sqrt{1+\dfrac{1}{\;n}}$,利用上述不等式,结合对数的运算性质即可证得结论. 解:(1)当$a=1$时,$f(x)=xe^{x}-e^{x}=e^{x}(x-1)$, $f\prime (x)=e^{x}(x-1)+e^{x}=xe^{x}$, $\because e^{x} > 0$, $\therefore$当$x\in (0,+\infty )$时,$f\prime (x) > 0$,$f(x)$单调递增;当$x\in (-\infty ,0)$时,$f\prime (x) < 0$,$f(x)$单调递减. (2)令$g(x)=f(x)+1=xe^{ax}-e^{x}+1(x > 0)$, $\because f(x) < -1$,$f(x)+1 < 0$, $\therefore g(x) < g(0)=0$在$x > 0$上恒成立, 又$g\prime (x)=e^{ax}+xae^{ax}-e^{x}$, 令$h(x)=g\prime (x)$,则$h\prime (x)=ae^{ax}+a(e^{ax}+axe^{ax})-e^{x}=a(2e^{ax}+axe^{ax})-e^{x}$, $\therefore h\prime (0)=2a-1$, ①当$2a-1 > 0$,即$a > \dfrac{1}{2}$,$h\prime (0)=\lim\limits_{x\rightarrow 0+}\dfrac{g\prime (x)-g\prime (0)}{x-0}=\lim\limits_{x\rightarrow 0+}\dfrac{g\prime (x)}{x} > 0$, $\therefore \exists x_{0} > 0$,使得当$x\in (0,x_{0})$,有$\dfrac{\;g\prime (x)}{x} > 0$,$\therefore g\prime (x) > 0$, 所以$g(x)$单调递增,$g(x_{0}) > g(0)=0$,矛盾; ②当$2a-1\leqslant 0$,即$a\leqslant \dfrac{1}{2}$, $g\prime (x)=e^{ax}+xae^{ax}-e^{x}=(1+ax)e^{ax}-e^{x}$, 若$1+ax\leqslant 0$,则$g'(x) < 0$, 所以$g(x)$在$[0$,$+\infty )$上单调递减,$g(x)\leqslant g(0)=0$,符合题意. 若$1+ax > 0$,则$g\prime (x)=e^{ax}+xae^{ax}-e^{x}=e^{ax+\ln (1+ax)}-e^{x}\leqslant {e}^{\dfrac{1}{2}x+\ln (1+\dfrac{1}{2}x)}-e^{x}\leqslant {e}^{\dfrac{1}{2}x+\dfrac{1}{2}x}-{e}^{x}=0$, 所以$g(x)$在$(0,+\infty )$上单调递减,$g(x)\leqslant g(0)=0$,符合题意. 综上所述,实数$a$的取值范围是$a\leqslant \dfrac{1}{2}$. (3)由(2)可知,当$a=\dfrac{1}{2}$时,$f(x)=x{e}^{\dfrac{1}{2}x}-{e}^{x} < -1(x > 0)$, 令$x=\ln (1+\dfrac{1}{n})(n\in N^{*})$得,$\ln (1+\dfrac{1}{n})\cdot {e}^{\dfrac{1}{2}\ln (1+\dfrac{1}{n})}-{e}^{\ln (1+\dfrac{1}{n})} < -1$, 整理得,$\ln (1+\dfrac{1}{n})\cdot \sqrt{1+\dfrac{1}{n}}-\dfrac{1}{n} < 0$, $\therefore$$\dfrac{\dfrac{1}{\;n}}{\sqrt{1+\dfrac{1}{n}}} > \ln (1+\dfrac{1}{n})$, $\therefore$$\dfrac{1}{\sqrt{{n}^{2}+n}} > \ln (\dfrac{n+1}{n})$,$\therefore$$\sum\limits_{k=1}^{n}\dfrac{1}{\sqrt{{k}^{2}+k}} > \sum\limits_{k=1}^{n}\ln (\dfrac{k+1}{k})=\ln (\dfrac{2}{1}\times \dfrac{3}{2}\times ...\times \dfrac{n+1}{n})=\ln (n+1)$, 即$\dfrac{1}{\sqrt{{1}^{2}+1}}+\dfrac{1}{\sqrt{{2}^{2}+2}}+...+\dfrac{1}{\sqrt{\;{n}^{2}+n}} > \ln (n+1)$. 点评:本题主要考查了利用导数研究函数的单调性,考查了学生分析问题和转化问题的能力,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022xgk2/2022-12-16/33421.html |