(10分)已知$\{a_{n}\}$是等差数列,$\{b_{n}\}$是公比为2的等比数列,且$a_{2}-b_{2}=a_{3}-b_{3}=b_{4}-a_{4}$. (1)证明:$a_{1}=b_{1}$; (2)求集合$\{k\vert b_{k}=a_{m}+a_{1}$,$1\leqslant m\leqslant 500\}$中元素的个数. 分析:(1)设等差数列$\{a_{n}\}$的公差为$d$,由题意可得$a_{1}+d-2b_{1}=a_{1}+2d-4b_{1}$,$a_{1}+d-2b_{1}=4d-(a_{1}+3d)$,根据这两式即可证明$a_{1}=b_{1}$; (2)由题设条件可知$2^{k-1}=2m$,由$m$的范围,求出$k$的范围,进而得出答案. 解:(1)证明:设等差数列$\{a_{n}\}$的公差为$d$, 由$a_{2}-b_{2}=a_{3}-b_{3}$,得$a_{1}+d-2b_{1}=a_{1}+2d-4b_{1}$,则$d=2b_{1}$, 由$a_{2}-b_{2}=b_{4}-a_{4}$,得$a_{1}+d-2b_{1}=8b_{1}-(a_{1}+3d)$, 即$a_{1}+d-2b_{1}=4d-(a_{1}+3d)$, $\therefore a_{1}=b_{1}$. (2)由(1)知,$d=2b_{1}=2a_{1}$, 由$b_{k}=a_{m}+a_{1}$知,${b}_{1}\cdot {2}^{k-1}={a}_{1}+(m-1)d+{a}_{1}$, $\therefore$${b}_{1}\cdot {2}^{k-1}={b}_{1}+(m-1)\cdot 2{b}_{1}+{b}_{1}$,即$2^{k-1}=2m$, 又$1\leqslant m\leqslant 500$,故$2\leqslant 2^{k-1}\leqslant 1000$,则$2\leqslant k\leqslant 10$, 故集合$\{k\vert b_{k}=a_{m}+a_{1}$,$1\leqslant m\leqslant 500\}$中元素个数为9个. 点评:本题考查等差数列与等比数列的综合运用,考查运算求解能力,属于中档题.
|