12.(5分)若$x$,$y$满足$x^{2}+y^{2}-xy=1$,则$($ $)$ A.$x+y\leqslant 1$ B.$x+y\geqslant -2$ C.$x^{2}+y^{2}\leqslant 2$ D.$x^{2}+y^{2}\geqslant 1$ 分析:方法一:原等式可化为,$(x-\dfrac{y}{2})^{2}+(\dfrac{\sqrt{3}}{2}y)^{2}=1$,进行三角代换,令$\left\{\begin{array}{l}{x-\dfrac{y}{2}=\cos \theta }\\ {\dfrac{\sqrt{3}}{2}y=\sin \theta }\end{array}\right.$,则$\left\{\begin{array}{l}{x=\dfrac{\sqrt{3}}{3}\sin \theta +\cos \theta }\\ {y=\dfrac{2\sqrt{3}}{3}\sin \theta }\end{array}\right.$,结合三角函数的性质分别求出$x+y$与$x^{2}+y^{2}$的取值范围即可. 方法二:由$x^{2}+y^{2}-xy=1$可得,$(x+y)^{2}=1+3xy\leqslant 1+3(\dfrac{x+y}{2})^{2}$,$x^{2}+y^{2}-1=xy\leqslant \dfrac{{x}^{2}+{y}^{2}}{2}$,分别求出$x+y$与$x^{2}+y^{2}$的取值范围即可. 解:方法一:由$x^{2}+y^{2}-xy=1$可得,$(x-\dfrac{y}{2})^{2}+(\dfrac{\sqrt{3}}{2}y)^{2}=1$, 令$\left\{\begin{array}{l}{x-\dfrac{y}{2}=\cos \theta }\\ {\dfrac{\sqrt{3}}{2}y=\sin \theta }\end{array}\right.$,则$\left\{\begin{array}{l}{x=\dfrac{\sqrt{3}}{3}\sin \theta +\cos \theta }\\ {y=\dfrac{2\sqrt{3}}{3}\sin \theta }\end{array}\right.$, $\therefore x+y=\sqrt{3}\sin \theta +\cos \theta =2\sin (\theta +\dfrac{\pi }{6})\in [-2$,$2]$,故$A$错,$B$对, $\because x^{2}+y^{2}=(\dfrac{\sqrt{3}}{3}\sin \theta +\cos \theta )^{2}+(\dfrac{2\sqrt{3}}{3}\sin \theta )^{2}=\dfrac{\sqrt{3}}{3}\sin 2\theta -\dfrac{1}{3}\cos 2\theta +\dfrac{4}{3}=\dfrac{2}{3}\sin (2\theta -\dfrac{\pi }{6})+\dfrac{4}{3}\in [\dfrac{2}{3}$,$2]$, 故$C$对,$D$错, 方法二:对于$A$,$B$,由$x^{2}+y^{2}-xy=1$可得,$(x+y)^{2}=1+3xy\leqslant 1+3(\dfrac{x+y}{2})^{2}$,即$\dfrac{1}{4}(x+y)^{2}\leqslant 1$, $\therefore (x+y)^{2}\leqslant 4$,$\therefore -2\leqslant x+y\leqslant 2$,故$A$错,$B$对, 对于$C$,$D$,由$x^{2}+y^{2}-xy=1$得,$x^{2}+y^{2}-1=xy\leqslant \dfrac{{x}^{2}+{y}^{2}}{2}$, $\therefore x^{2}+y^{2}\leqslant 2$,故$C$对; $\because -xy\leqslant \dfrac{{x}^{2}+{y}^{2}}{2}$,$\therefore 1=x^{2}+y^{2}-xy\leqslant x^{2}+y^{2}+\dfrac{{x}^{2}+{y}^{2}}{2}=\dfrac{3({x}^{2}+{y}^{2})}{2}$, $\therefore$${x}^{2}+{y}^{2}\geqslant \dfrac{2}{3}$,故$D$错误. 故选:$BC$. 点评:本题主要考查了三角代换求最值,考查了三角函数的性质,同时考查了学生分析问题,转化问题的能力,属于中档题.
|