(5分)如图,四边形$ABCD$为正方形,$ED\bot$平面$ABCD$,$FB//ED$,$AB=ED=2FB$.记三棱锥$E-ACD$,$F-ABC$,$F-ACE$的体积分别为$V_{1}$,$V_{2}$,$V_{3}$,则( )
A.$V_{3}=2V_{2}$ B.$V_{3}=V_{1}$ C.$V_{3}=V_{1}+V_{2}$ D.$2V_{3}=3V_{1}$ 分析:利用直接法与等体积法直接计算各三棱锥的体积,进而可得$V_{1}$、$V_{2}$、$V_{3}$之间的关系. 解:设$AB=ED=2FB=2$, $V_{1}=\dfrac{1}{3}\times S_{\Delta ACD}\times \vert ED\vert =\dfrac{4}{3}$, $V_{2}=\dfrac{1}{3}\times S_{\Delta ABC}\times \vert FB\vert =\dfrac{2}{3}$, 如图所示,
连接$BD$交$AC$于点$M$,连接$EM$、$FM$, 则$FM=\sqrt{3}$,$EM=\sqrt{6}$,$EF=3$, 故$S_{\Delta EMF}=\dfrac{1}{2}\times \sqrt{3}\times \sqrt{6}=\dfrac{3\sqrt{2}}{2}$, $V_{3}=\dfrac{1}{3}S_{\Delta EMF}\times AC=\dfrac{1}{3}\times \dfrac{3\sqrt{2}}{2}\times 2\sqrt{2}=2$, 故$C$、$D$正确,$A$、$B$错误. 故选:$CD$. 点评:本题主要考查组合体的体积,熟练掌握棱锥的体积公式是解决本题的关键.
|