2022年高考数学新高考Ⅱ-10 |
|
2022-12-16 17:31:46 |
|
(5分)已知$O$为坐标原点,过抛物线$C:y^{2}=2px(p > 0)$焦点$F$的直线与$C$交于$A$,$B$两点,其中$A$在第一象限,点$M(p,0)$.若$\vert AF\vert =\vert AM\vert$,则( ) A.直线$AB$的斜率为$2\sqrt{6}$ B.$\vert OB\vert =\vert OF\vert$ C.$\vert AB\vert > 4\vert OF\vert$ D.$\angle OAM+\angle OBM < 180^\circ$ 分析:由已知可得$A$的坐标,再由抛物线焦点弦的性质求得$B$点坐标,然后逐一分析四个选项得答案. 解:如图,
$\because F(\dfrac{p}{2}$,$0)$,$M(p,0)$,且$\vert AF\vert =\vert AM\vert$,$\therefore A(\dfrac{3p}{4}$,$\dfrac{\sqrt{6}p}{2})$, 由抛物线焦点弦的性质可得${x}_{A}\cdot {x}_{B}=\dfrac{{p}^{2}}{4}$,则${x}_{B}=\dfrac{p}{3}$,则$B(\dfrac{p}{3}$,$-\dfrac{\sqrt{6}p}{3})$, $\therefore$${k}_{AB}={k}_{AF}=\dfrac{\dfrac{\sqrt{6}p}{2}-0}{\dfrac{3p}{4}-\dfrac{p}{2}}=2\sqrt{6}$,故$A$正确; $\vert OB\vert =\sqrt{\dfrac{{p}^{2}}{9}+\dfrac{6{p}^{2}}{9}}=\dfrac{\sqrt{7}p}{3}$,$\vert OF\vert =\dfrac{p}{2}$,$\vert OB\vert \ne \vert OF\vert$,故$B$错误; $\vert AB\vert =\dfrac{3p}{4}+\dfrac{p}{3}+p=\dfrac{25p}{12} > 2p=4\vert OF\vert$,故$C$正确; $\vert OA{\vert }^{2}=\dfrac{33{p}^{2}}{16}$,$\vert OB{\vert }^{2}=\dfrac{7{p}^{2}}{9}$,$\vert AM{\vert }^{2}=\dfrac{25{p}^{2}}{16}$,$\vert BM{\vert }^{2}=\dfrac{10{p}^{2}}{9}$,$\vert OM\vert =p$, $\because \vert OA\vert ^{2}+\vert AM\vert ^{2} > \vert OM\vert ^{2}$,$\vert OB\vert ^{2}+\vert BM\vert ^{2} > \vert OM\vert ^{2}$, $\therefore \angle OAM$,$\angle OBM$均为锐角,可得$\angle OAM+\angle OBM < 180^\circ$,故$D$正确. 故选:$ACD$. 点评:本题考查抛物线的几何性质,考查运算求解能力,是中档题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022xgk2/2022-12-16/33409.html |